

University of Florida Testbed Initiative - Transit Components

Bus Bike Rack System (BDV31-977-113)

October 2020

Final Report

PM: Gabrielle Matthews, Florida Department of Transportation (FDOT)

PI: Yong-Kyu YK Yoon, University of Florida (UF)
Team members:
 Todd Schumann (UF)
 Hyun Ho Cho (UF)
 Austin Kee (UF)
 Xiao Qin (UF)
UFTI Director: Lily Elefteriadou

II

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors

and not necessarily those of the State of Florida Department of Transportation.

III

METRIC CONVERSION TABLE

https://highways.dot.gov/research/resources/research-library/modern-metric-conversion-factors

SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol

LENGTH
in inches 25.4 millimeters mm
ft feet 0.305 meters m

yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in

2
square inches 645.2 square millimeters mm

2

ft
2

square feet 0.093 square meters m
2

yd
2

square yard 0.836 square meters m
2

ac acres 0.405 hectares ha

mi
2

square miles 2.59 square kilometers km
2

VOLUME
fl oz fluid ounces 29.57 milliliters mL

gal gallons 3.785 liters L
ft

3
cubic feet 0.028 cubic meters m

3

yd
3

cubic yards 0.765 cubic meters m
3

NOTE: volumes greater than 1000 L shall be shown in m
3

MASS
oz ounces 28.35 grams g

lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t")

TEMPERATURE (exact degrees)
o
F Fahrenheit 5 (F-32)/9 Celsius

o
C

or (F-32)/1.8

ILLUMINATION
fc foot-candles 10.76 lux lx
fl foot-Lamberts 3.426 candela/m

2
cd/m

2

FORCE and PRESSURE or STRESS
lbf poundforce 4.45 newtons N

lbf/in
2

poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS FROM SI UNITS

Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in

m meters 3.28 feet ft
m meters 1.09 yards yd

km kilometers 0.621 miles mi

AREA
mm

2
 square millimeters 0.0016 square inches in

2

m
2
 square meters 10.764 square feet ft

2

m
2
 square meters 1.195 square yards yd

2

ha hectares 2.47 acres ac
km

2
square kilometers 0.386 square miles mi

2

VOLUME
mL milliliters 0.034 fluid ounces fl oz

L liters 0.264 gallons gal

m
3

cubic meters 35.314 cubic feet ft
3

m
3

cubic meters 1.307 cubic yards yd
3

MASS
g grams 0.035 ounces oz

kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T

TEMPERATURE (exact degrees)
o
C Celsius 1.8C+32 Fahrenheit

o
F

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m

2
candela/m

2
0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce lbf

kPa kilopascals 0.145 poundforce per square inch lbf/in
2

*SI is the symbol for th International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. e

(Revised March 2003)

IV

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

University of Florida Testbed Initiative - Transit
Components:
Bus Bike Rack System (BDV31-977-113)

5. Report Date

Oct. 2020

6. Performing Organization Code:

7. Author(s)

Yong-Kyu Yoon, Todd Schumann, Hyun Ho Cho, Austin
Kee, Xiao Qin

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Florida

946 CENTER DR GAINESVILLE, FL 32611

10. Work Unit No.

11. Contract or Grant No.

BDV31-977-113

12. Sponsoring Agency Name and Address

The State of Florida Department of Transportation,

605 Suwannee St., Tallahassee, FL 32399

13. Type of Report and Period

Draft Final Report, 5/20/19 – 10/31/20

14. Sponsoring Agency

Code

15. Supplementary Notes

16. Abstract

The Alachua County, FL, has the second highest bicycle mode share in the state. Bicycle riding
combined with bus riding, i.e., multimodal commuting, is very popular in the City of
Gainesville (COG), FL, while quantified information of usage is very limited. Although some
infrastructure could be upgraded, there is no scientific data and ground to make a good
decision. For example, for certain bus routes, the standard two-slot bike racks may not be
sufficient because of the large number of bus-bike commuters, for which replacing the
existing ones with three-slot bike racks are desirable. As COG is a college town, the bus bike
rack usage is varying daily, weekly, seasonal, and yearly. Taking that into account, a technical
system to access the usage data and help decision is imperative.
A UF team has developed a remote real-time sensing system for the detection of bike
presence on the bus bike rack using pressure sensors and readout electronics in this project.
For the consideration of future usage by potential bike riders, BikeRide mobile app has been
developed. The report details the hardware of sensing system, the developed app, and the
bus bike rack usage data in different time scales, e.g., day, week, and season, and in different
bus routes.
The purpose of this study is to develop a bus bike rack sensing system that can detect bicycle
usage per rack position and perform usage analysis and behavior study of bike users.
The outcomes are expected to help COG increase user satisfaction of bus-bike multimodal
commuters, enhance attractiveness of multimodal commuting by enabling better trip
planning for bus-bike riders, and maximize cost effectiveness of infrastructure investment
with help from UF’s advanced information technology (IT).

17. Key Words

Bike Rack, Sensor, Mobile App, Multimodal

Commuting

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this

page) Unclassified

21. No. of Pages

59

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

V

Acknowledgements

This work was completed under FDOT contract number BDV31-977-113. The authors

would like to acknowledge the following people for their invaluable guidance and help in the

completion of this study: Gabrielle Matthews (FDOT), David Sherman (FDOT), Yong-Kyu Yoon
(UF), Nithin Agarwal (UF), Todd Schumann (UF), Hyun Ho Cho (UF), Austin Kee (UF), Xiao Qin
(UF), Lily Elefteriadou (UF), and Jesus M. Gomez (COG).

VI

Executive Summary

Alachua County, FL, has the second highest bicycle mode share in the state, and passengers in
this city employ bicycle racks on RTS buses approximately 750 times per day. Despite this
massive usage in Gainesville, FL, the system frequently faces capacity constraints. Due to
safety1 and maneuverability concerns, RTS buses are equipped with two-bike racks, which
mean only two bicycles can be accommodated at the same time. Although there are already
three-bike racks which can be installed in front of the bus, there is hesitancy to purchase the
higher capacity racks because there is only limited information about how many people use and
need them. Moreover, a limited budget also makes this problem unsolved.

Existing bike rack technology has two major shortfalls, which are just providing the deployment
of bike racks and no real-time data on bike rack capacity. With this inconvenience, people who
would like to use bike rack cannot use the bike rack if there is no availability until the next bus is
coming for about 30 minutes or so.

From this idea, our group has installed the bike rack sensing system from Jun. 2017 to Dec.
2018 to get information which can be used to detect when bus bike racks are used. Now, we
have data from the bike rack sensing system so that we can perform a usage analysis and
behavior study with the data collected. Furthermore, we have made the BikeRide Mobile
Application which can be used for checking real-time bike rack availability, and bike rack users
can take advantage of this technology for their efficient time management.

We have reached the following conclusions. The bus bike rack usage is distributed during the
daytime from 7 am to 6 pm, which is aligned with the commuting and/or school time. Weekday
usage exceeds the weekend usage, which indicates most of bus bike rack usage is for
commuting during weekdays. It is interest that the usage on Saturdays during fall semester is
much more than the other semesters (spring and summer) because of the college football
games in town. Usage data for several bus routes has been included. Certain bus routes are
very popular for the bus bike multimodal commuters, which would justify for replacing the
existing two-slot bike racks with three-slot ones.

1 The primary safety concern is the obstruction of headlights.

VII

Table of Contents

DISCLAIMER..II

METRIC CONVERSION TABLE...III

TECHNICAL REPORT DOCUMENTATION PAGE..IV

ACKNOWLEDGEMENTS..V

EXECUTIVE SUMMARY...VI

LIST OF FIGURES………. XI

LIST OF TABLES………. XIII

PART A: INTRODUCTION AND BACKGROUND INFORMATION…………………………………………………….1

1 Introduction…..1

 1.1 Background Statement..1

 1.2 Project Objectives..2

1.3 Supporting Tasks and Deliverables..2

 1.3.1 Bicycle Rack Capacity Sensing System……………………………………………………………………………..2

2 Bicycle Rack Occupancy Sensor System...3

 2.1 Sensor System Fabrication...3

 2.2 Sensing Concept...4

 2.3 System Design.……...........5

 2.4 Installation…….7

 2.5 Bill of Materials…………………………………………………………………………………………………...................8

Part B: BIKERIDE MOBILE APPLICATION..11

3 BikeRide Mobile Application..11

 3.1 Introduction...11

 3.2 Requirements...11

 3.2.1 User Requirements..11

VIII

 3.2.2 Functional Requirements...11

 3.2.3 Non-Functional Requirements...12

 3.3 Wireframe..12

 3.4 User Interface & Features..14

 3.4.1. Main Page...14

 3.4.2. Get a User’s Current Location...14

 3.4.3 Search Buses by Route Number...15

 3.4.4. Get a Bus’s Current Location...16

 3.4.5 Data Source..17

 3.4.6 API Documentation..18

PART C: USAGE ANALSIS of BUS BIKE RACK..21

4 Usage Analysis of Bus Bike Rack..21

 4.1 Introduction...21

 4.2 Overall Usage Analysis...21

4.2.1 Daily Usage Analysis...22

4.2.2 Weekly Usage Analysis...23

4.2.3 Monthly Usage Analysis..24

4.2.4 Seasonal Usage Analysis...25

4.2.5 Saturday Usage Analysis...25

4.3 Individual Bus Route-Based Usage Analysis...27

 4.3.1 Bus #2...27

4.3.2 Bus #4...28

4.3.3 Bus #8...29

4.3.4 Bus #16...30

IX

4.3.5 Bus #13...31

4.3.6 Bus # 22..32

 4.4 Discussion and Conclusion..33

Part D: CURRET STATE and FINAL RECOMMENDATIONS……………………………………………...............34

5 Current State of the Project...34

 5.1 General Architecture...34

 5.2 Mobile Application...34

 5.3 Web API...35

 5.4. Moving Forward with Deployment and Long-Term Support..36

6 Configuring, Building, and Installing the BikeRide Application……………………………………………….39

 6.1 Introduction………39

 6.2 Installing Flutter SDK……………………………….………………………………………………………………………..39

6.2.1 MacOS/Linux……………….………………………………………………………………………………………………..39

 6.3 Installing Android Studio……………………………………………………………………………………………………40

6.3.1 MacOS………………………….…………………………………………………………………………………………….…40

6.3.2 Linux…………………………………………………………………….……………………………………………………….40

 6.4 Configuring Android Studio……………………………………………………………………………………………...40

 6.5 Wrapping up the Installation………………………………………………………………………………………….…41

 6.6 Cloning the Project………………………………….……………………………………………………………………..…42

 6.6.1 Using Android Studio’s VCS…………………………………….……………………………………………………..42

 6.6.2 Using Git CLI………………………………….……………………………………………………………………………...42

 6.6.3 Manually Adding the Project to Android Studio………………………….…………………………………42

 6.7 Building the Project………………………………………………………………………….……………………………….43

 6.7.1 Ensuring the Project is Functional…………………………………………………..………………………….….43

 6.7.2 Generating App Code and Building the App for Target Devices.…………………………………….43

 6.8 Disclaimer..…….…43

X

 6.9 Android Minimum Requirements OS…………………………………………………………………………………44

 6.10 iOS Minimum Requirements OS………………………………………………………………………………………44

PART E: SUMMARY AND CONCLUSION………………………………………………………………………………….…45

7 Summary and Conclusion………………………………………………………………………………………………………45

 7.1 Summary……..45

 7.2 Conclusion……46

XI

List of Figures

Figure 2-1. Fabrication steps of the sensor assembly...3

Figure 2-2. Batch fabrication of sensor assemblies..4

Figure 2-3. Wiring diagram illustrating the occupancy sensing concept..5

Figure 2-4. Wiring diagram of the system, excluding power connections.....................................6

Figure 2-5. Assembled system secured in a plastic box, ready for installation..............................6

Figure 2-6. (Left) Side panel next to the driver’s feet that contains the port to the battery
compartment (outlined). (Right) View from the battery compartment of the same port
(outlined)………..7

Figure 2-7. (Left) Sensor wire fed through the front bumper of the bus to the front

undercarriage. (Right) Port under the front undercarriage where the sensor wires are fed to the

battery.………8

Figure 3-1. Wireframe. Main interface (left), user’s location(top), function of searching buses
(bottom-left), search result (bottom-middle), bus’s location (bottom-right)……...……………..…….13

Figure 3-2. User interface and feature.……………………………………………………………………………………14

Figure 3-3. User’s current location.………………………………………………………………………………………….15

Figure 3-4. Search Buses by route number.………………………………………………………………………….….16

Figure 3-5. Get Bus’s current location.……………………………………………………………………………………..17

Figure 4-1. List of the bus number and system ID of the 18 buses used for the data analysis..…21

Figure 4-2. Daily bike rack usage……………………………………………………………………………………………….22

Figure 4-3. Weekly bike rack usage…………………………………………………………………………………………...23

Figure 4-4. Monthly bike rack usage………………………………………………………………………………………….24

Figure 4-5. Seasonal bike rack usage…………………………………………………………………………………………25

Figure 4-6. Saturday bike rack usage…………………………………………………………………………………………26

Figure 4-7. The map (a) and the bike rack usage data (b) of Bus #2………………………………………….27

Figure 4-8. The map (a) and the bike rack usage data (b) of Bus #4………………………………………….28

Figure 4-9. The map (a) and the bike rack usage data (b) of Bus #8…………………………………………….29

XII

Figure 4-10. The map (a) and the bike rack usage data (b) of Bus #16…………………………………………30

Figure 4-11. The map (a) and the bike rack usage data (b) of Bus #13………………………………………31

Figure 4-12. The map (a) and the bike rack usage data (b) of Bus #22……………………………………….32

Figure 5-1. UML activity diagram for BikeRide mobile application.……………………………………….….34

Figure 5-2. UML activity diagram for the BikeRide web API.………………………………………………….….35

XIII

LIST OF TABLES

Table 2-1. Bill of materials to build 20 systems ...9

Table 2-2. Cost of the cellular plan for 20 systems...10

Table 3-1. User Requirements..11

Table 3-2. Functional requirements..12

Table 3-3. Non-functional requirements..12

Table 3-4. Data source..18

1

PART A: INTRODUCTION AND BACKGROUND INFORMATION

 1 Introduction

 1.1 Background Statement

The City of Gainesville (COG) Regional Transit System (RTS) provides bus service to the
University of Florida (UF), Santa Fe College (SF), portions of unincorporated Alachua County,
and the City itself. The partnership between these entities has produced remarkable results
over the last two decades. National Transit Database (NTD) statistics show the region has the
14th most trips per capita in the nation2 and the most trips per revenue mile in Florida.3

The COG urbanized area (UA) has been equally successful in encouraging bicycle usage and
integrating this usage with transit to expand the reach of both. Data from the American
Community Survey shows that Alachua County has the second highest bicycle mode share in
the state.4 Automatic Passenger Counter (APC) data indicates that passengers employ bicycle
racks on RTS buses approximately 750 times per day. Based on average daily ridership, at least
2% of all trips involve the use of a bicycle. This is remarkable when you consider the statewide
bicycle mode share is barely above 0.7%.

The urbanized area’s remarkably high mode shares of both transit5 and bicycling6 has not been
without its challenges. The system frequently faces capacity constraints. Because of safety7 and
maneuverability concerns, typical bus bicycle racks can only store two bicycles at a time.
Though FDOT recently granted transit agencies the ability to transition to larger, three-position
bicycle racks, it is still in the incipient stages of being adopted. There is hesitancy to purchase
the higher capacity racks because there is only limited intelligence on their need. Anecdotal
evidence, though, does suggest a need for these larger capacity bicycle racks – RTS customer
service representatives regularly receive complaints from individuals who miss the bus because
the bicycle rack is full and they will not or cannot8 leave their bicycle at the bus stop. However,
given limited capital funding expenditures9, this is not sufficient evidence to justify the change.

As stated above, RTS relies on its APC units to determine bicycle usage. This technology has two
major shortfalls:

2 https://fivethirtyeight.com/datalab/how-your-citys-public-transit-stacks-up/
3 http://www.fdot.gov/transit/Pages/2015TransitHandbook.pdf
4
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B08006&prodTy
pe=table
5 http://www.fdot.gov/planning/trends/special/acs012816.pdf
6 http://www.cityclock.org/urban-cycling-mode-share/#.WJSIHlMrKUk
7 The primary safety concern is the obstruction of headlights.
8 There are many reasons for this. The most common reasons posited are inadequacy of the stop to store a bicycle
(both safety and space) and the need for the bike on the other end of the trip. As one example, it is quite possible
to have classes in abutting periods on UF’s campus that require a bicycle to be traveled between in a timely manner.
9 The three position bicycle racks vary widely in cost but can be purchased for approximately $600 to $800.

https://fivethirtyeight.com/datalab/how-your-citys-public-transit-stacks-up/
http://www.fdot.gov/transit/Pages/2015TransitHandbook.pdf
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B08006&prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B08006&prodType=table
http://www.fdot.gov/planning/trends/special/acs012816.pdf
http://www.cityclock.org/urban-cycling-mode-share/#.WJSIHlMrKUk

2

1. It only shows rack deployment, and
2. The data is post-processed, thereby providing no real-time insight on available bike rack

capacity.

The first shortfall leads to serious undercounting of bicycle usage.10 The second shortfall causes
users who want to use a bicycle to guess whether it will be possible since there is no live
information on availability. Considering several bus stops are only served every 30- to 60-
minutes, there is a severe penalty for users that wait to use a bicycle rack only to be denied.

For this initiative, we have performed the initial work on the bus bike rack sensing system from
Jun. 2017 – Dec. 2019. We have successfully implemented pressure sensing systems in 18 COG
buses. Some data have been acquired between May 2017 and Dec. 2018, which have been
reported during the project meeting.

 1.2. Project Objectives

The purpose of this study is to develop a bus bike rack sensing system that can detect bicycle
usage per rack position and perform usage analysis and behavior study of bike users. This will
fulfill the following objectives:

1) Increase use of ITS technology in transit.
2) Improve transit and bicycle mode attractiveness by enabling better trip planning and

increasing user satisfaction.
3) Maximize cost effectiveness of infrastructure investments by better understanding travel

patterns of bicycle users.

 1.3 Supporting Tasks and Deliverables

 1.3.1 Bicycle Rack Capacity Sensing System

UF developed the smart bus bike rack system with a pressure sensor integrated in each rack
slot. However, for the sensor reliability and later maintenance, a commercially available
pressure sensor is adopted for the sensor deployment to the bus bike rack.

10 Most RTS directional patterns have between 20 to 30 stops. Though likely improbable, a trip with 30 stops where
the bike rack is deployed and fully utilized at the first stop could have 58 trips occur with passengers using a bicycle,
but database records would only show one usage. Equally, you could have some large, untold number of trip denials
because the bicycle rack is fully occupied yet the database’s single record would imply limited demand.

3

2 Bicycle Rack Occupancy Sensor System

 2.1 Sensor System Fabrication

To enable the systems built during this project to continue operation after completion, we
elected to use commercial off-the-shelf (COTS) sensors with a simple fabrication. This allows
replacement of the sensors once the systems are handed off to the responsible agency.

The base sensor is a force sensitive resistor. When pressure is applied to the sensor head, the
resistance of the sensor drops sharply. This is read by the system using a potential divider with a
large series resistor to monitor occupancy and a small series resistor to monitor sensor failure
(more in the sensing concept section).

As the sensor head is fragile to sharp contact, the sensor is protected by aluminum bars. These
also serve to concentrate the pressure to the sensor head, allowing a small, 0.25” force sensitive
resistor to measure a 12” area along the tire support on the rack. Silicone adhesive is used to
assemble the sensor assembly and to seal the sensor from the elements. The fabrication is as
follows:

A) Solder wire connections to COTS sensor
and crimp opposite ends into RJ11
connector. Leave approximately 10-15
feet of wire.

B) Use silicone to secure the sensor to the
aluminum bar with the head
approximately at the center. Also secure
the end of the wiring to the aluminum
bar. Allow silicone to dry.

C) Use silicone to seal the sensor and
exposed connections. Allow silicone to
dry.

D) Create the plunger over the sensor head
using silicone. Add height-matched
silicone bumps at each end of the
aluminum bar. Allow the silicone to dry.

E) Using a thin layer of silicone, secure the
top aluminum bar to the rest of the
sensor. Do NOT press into place. Allow
silicone to dry.

F) Coat a layer of silicone around each end
of the sensor assembly to ensure the
sensor stays intact. Allow silicone to dry.

Figure 2-1. Fabrication steps of the sensor assembly.

4

Although the fabrication is simple and very tolerant especially as the sensors are individually
thresholded, the full process is time consuming since the silicone will take about 12-24 hours to
fully cure at each step. It is therefore recommended to produce many sensors simultaneously to
increase throughput. Allowing the silicone to fully cure is critical during assembly as it will shrink
slightly during the curing process, leading to the sensors reading as always triggered. By fully
curing the silicone at each step, this effect is severely reduced, allowing a larger measurement
range for the sensors.

Figure 2-2. Batch fabrication of sensor assemblies.

 2.2 Sensing Concept

Due to the large (orders of magnitude) change in resistance of the COTS sensor, extreme accuracy
is not necessary when measuring resistance, eliminating the need for a Whetstone bridge
configuration. Instead, a large resistor (100 kΩ) is placed in series with the sensor. A constant
voltage is placed across the two resistors and the voltage is measured between them. When
untriggered, the sensor is highly resistive and thus the measured voltage is close to the applied
voltage. When triggered, the sensor’s resistance drops much below the static resistor, and the
measured voltage becomes much smaller than the applied voltage. By setting a threshold value
for the measured voltage, the system determines whether the slot is occupied.

To detect cases where a sensor is shorted (the voltage is bypassing the sensor element), a second
resistor is connected in the same manner, but with a resistance comparable to the lowest
resistance the sensor can achieve (approximately 2 kΩ for these COTS sensors). When the voltage
measured between this resistor and the sensor is measured, it should read a non-zero value.
However, if the sensor is shorted, a very low value will be read as the voltage drop across sensor
itself is 0 V. Again, this value is thresholded to determine if any given sensor is malfunctioning.

Unfortunately, due to the high resistance of the sensor when not triggered, checking for open
circuits (sensor has become disconnected) is not feasible without additional circuitry such as
buffering opamps. In this case, the systems will rely on user-reported problems. However, thus
far, instances of this happening have been rare.

5

Figure 2-3. Wiring diagram illustrating the occupancy sensing concept.

 2.3 System Design

Due to incompatibility with existing systems and reluctance of vendors to allow our sensors to
interface with their systems, a stand-alone system was developed to read the bicycle rack
occupancy sensors. The base platform was chosen to be an Arduino. This keeps the components
easily replaceable, but also offers the option of designing a custom circuit board if the systems
will be deployed in a high enough quantity to warrant it.

For communication, a SIM900 module was chosen. The SIM900 is limited to the 2G network,
although this is not an issue with the amount of data being communicated. As T-Mobile is the
only carrier currently supporting its 2G network, Ting, which uses T-Mobile’s network, was
chosen as the carrier, due to their flexibility with a high number of low-data devices.

Since the mobile network can have blind spots, a copy of all data and log files is stored on the
system in addition to data being sent. This is accomplished with an SD card module for nonvolatile
storage. The amount of data being stored is relatively low, so an 8GB or 16GB SD card is sufficient
for many months (the server also has the option to remotely erase the SD card). The SD card also
allows data to be stored temporarily when out of coverage and transmitted as stale data once
coverage resumes.

To alleviate sensor replacement work, two small custom boards were designed to branch the
sensor ports away from the system and sensors. The first board, which is placed with the system,
contains the necessary measurement resistors, headers for interfacing with the Arduino, and a
CAT5 port. A CAT5 cable is then used to route the necessary connections (see installation) to the
battery compartment of the bus. The second board, termed routing box, located in the battery
compartment, splits the connections into each sensor port. This allows sensors to be replaced
with relative ease, as they do not need to be routed through the cab of the bus.

12VDC power is down converted to 5VDC using a COTS USB car charger. These provide all the
necessary buffering to handle the power surge and dip when the bus starts up. The power and
ground terminals are soldered to wires with spade connectors to connect to the bus’s power
terminals. Ideally, the car charger would contain two ports, allowing the main system and the

6

SIM900 to be on different lines. The SIM900 input current during transmission in poor coverage
can cause a brownout in the Arduino, forcing a system reset, if it is powered from the Arduino.
This can be alleviated by splicing a secondary wire to the USB 5VDC feeding the Arduino if only a
single port is available on the car charger.

Figure 2-4. Wiring diagram of the system, excluding power connections.

Once the boards are wired together, the system is assembled in a small plastic box with holed
cut to allow external wiring. The individual components are secured with silicone or hot glue
except for the SIM900 module, which allows replacement of the SIM card if necessary.
Additionally, the SD card module should be placed in such a way that it allows the SD card to be
removed and replaced, as necessary. Finally, an inline fuse should be placed on the 12VDC power
line coming into the system as it is not guaranteed that the bus power is fused.

Figure 2-5. Assembled system secured in a plastic box, ready for installation.

 2.4 Installation

The installed systems are placed in the electronics cabinet of the bus, usually located directly
behind the driver. The power terminals are routed out of the system and attached to the keyed
power and ground terminals using spade connectors. The system is then tested to ensure that
data is being transmitted.

7

The CAT5 connection is then routed along the left side of the bus to the cabinet near the gas and
brake pedals. These cabinets are accessed by removing the panels along the left side of the bus.
The CAT5 connection is then routed into the battery compartment through a port used for power
connections for the other bus electronics in this cabinet.

Figure 2-6. (Left) Side panel next to the driver’s feet that contains the port to the battery
compartment (outlined). (Right) View from the battery compartment of the same port

(outlined).

Once in the battery compartment, the routing box is attached to the CAT5 connection. In some
cases, the port is not sufficiently large or open to pass a terminated CAT5 cable. In this case, it is
necessary to pass the unterminated CAT5 cable, then crimp the connector once it is passed.

The sensors are tested with a spare system directly prior to installation. Once functionality is
verified, the sensors are secured to the front or back tire support of the rack using a combination
of silicone and tie straps. It should be noted that the tie straps should not be over tightened and
should only be placed at the very ends of the sensor assemblies to prevent them from triggering
the sensor. The silicone adhesive attaches the sensor to the rack and the tie straps reduce the
shear on the sensor assembly. To remove a sensor, first remove the tie straps, then use a shear
motion to remove the sensor. Alternatively, using a sharp blade, cut through the silicone adhesive
under the sensor.

Once attached, the sensor wire is routed along the bars of the bike rack, using tie straps to secure
it at any bend and to keep it taut. This is extremely important as the bus wash will rip the sensor
off if there is any slack in the wire. The wire is then routed either under or through the front
bumper (depending on the bus model) to the front undercarriage, where it is secured using
another tie strap. Care should be taken near the hinge for the bike rack: enough slack should be
left so the bike rack can be folded up and down, but not enough slack should be left that the wire
will catch when folding up. Once in the undercarriage, the wire is routed through a small port
into the battery compartment, where it is plugged into the routing box.

8

Figure 2-7. (Left) Sensor wire fed through the front bumper of the bus to the front
undercarriage. (Right) Port under the front undercarriage where the sensor wires are fed to the

battery compartment.

The system is then fully tested again by powering up the bus. Each sensor is tested, followed by
every combination of sensors. The server is updated to map the system number to the installed
bus and the number of slots is set. If the system is set to auto-threshold the installation is
complete. Otherwise, the threshold is determined for each sensor and sent to the system through
the server.

 2.5 Bill of Materials

As mentioned above, to allow the responsible agency to either maintain or increase the number
of systems, every part used was commercially available, except for the small custom boards used
to branch out the sensor ports. More of these boards can be ordered with the Gerber files
included. Below is a bill of materials for the systems.

Table 2-1. Bill of materials to build 20 systems

Part Cost Number Subtotal

Arduino Mega $15.00 20 $300.00

SIM900 GSM Module $33.00 20 $660.00

MicroSD Card Module (5
pack)

$8.29 4 $33.16

9

SD Card $6.00 20 $120.00

Ting SIM Card $0.00 20 $0.00

USB Power Supply (2 pack) $9.00 10 $90.00

Resistors $10.00 1 $10.00

Ethernet Cable (500 ft) $20.00 2 $40.00

Phone Cable (500 ft) $10.00 3 $30.00

Force Sensitive Resistor $4.70 60 $282.00

Solder $20.00 1 $20.00

RJ11 Jacks (20 pack) $8.19 3 $24.57

RJ 45 Jacks (39 pack) $12.28 2 $24.56

Routing Box Board $110.00 1 $110.00

System Board

Sensor Board

Silicone $5.92 9 $53.28

8ft Aluminum Bar $13.98 15 $209.70

Wire Connections $7.68 4 $30.72

Packaging $20.00 20 $400.00

Total Cost: $2,437.99

Cost Per Bus: $121.90

In addition to the building cost, each system requires a cellular plan to communicate on the 2G
network. Given the low data rate and quantity of systems, Ting was chosen to be the provider as
they charge a small fee per line and group the data (approximately 20MB per month for 20
buses). The following table includes the costs associated with the cellular plan with Ting.

10

Table 2-2. Cost of the cellular plan for 20 systems

Ting Service Cost
(Monthly)

Number Subtotal
(monthly)

SIM Activation $6.00 20 $120.00

Data $10.00 1 $10.00

Taxes $1.22 20 $24.40

Total Monthly Cost: $154.40

Total Monthly Cost Per Bus: $7.72

11

Part B: BIKERIDE MOBILE APPLICATION

 3 BikeRide Mobile Application

 3.1 Introduction

RTS buses are one of the most used transportation mode in the City of Gainesville, and the bike
racks provide convenience for those passengers who are taking a bus with their bike. Because
the number of bike rack slots is limited, it is good for those passengers to know the bike rack
availability before they take a bus. BikeRide is a mobile application used for checking real-time
bike rack availability on RTS buses, built using Flutter to support both iOS and Android
platforms developed by the UF team. With the app, the users can know if a bus they plan to
take has capacity to hold a bike.

 3.2 Requirements

 3.2.1 User Requirements
This table is for what users need and require for BikeRide Mobile Application.

Table 3-1. User requirements

Req. ID User Requirements

3.2.1.1 The app shall provide a user’s current location

3.2.1.2 The app shall allow the user to search buses by route number

3.2.1.3 The app shall display bike rack availability of each running bus of a certain route

3.2.1.4 The app shall be able to locate a bus

3.2.1.5 The app shall allow the user to browse the map

 3.2.2 Functional Requirements
This table is for what BikeRide Mobile Application must meet the requirements for functions.

12

Table 3-2. Functional requirements

Req. ID Functional Requirements

3.2.2.1 The app shall provide a user’s current location after the user clicking the locating button

3.2.2.2 A list of bus information shall be provided after a valid user input of route number(s),
including the bike rack availability of the bus

3.2.2.3 The bike rack availability shall include the status of each slots (empty/occupied)

3.2.2.4 The app shall provide a bus’s current location after the user clicking the bus information
in the searching results

3.2.2.5 The map shall be displayed as the background of the app

 3.2.3 Non-Functional Requirements
This table is for basic requirements which BikeRide Mobile Application must operate.

Table 3-3. Non-functional requirements

 3.3 Wireframe

The wireframe provides an overview of the layout, user flow and functionality of the app.

Req. ID Non-Functional Requirements

3.2.3.1 Performance: finish loading app within 5 seconds

3.2.3.2 Scalability: be able to handle data for all the running buses

13

Figure 3-1. Wireframe. Main interface(left), user’s location(top), function of searching
buses(bottom-left), search result(bottom-middle), bus’s location(bottom-right)

14

 3.4 User Interface & Features

 3.4.1. Main page

A map of Gainesville is shown, with UF campus as the center by default.

Figure 3-2. User Interface and Feature

 3.4.2. Get a user’s current location

Tap the button on the bottom-left to get the user’s current location.

15

Figure 3-3. User’s current location

 3.4.3 Search buses by route number

Tap the button on the bottom-right to search buses by route number. Enter a bus route
number in the search bar to check all the running buses with sensors of the certain route. The
availability of each slot of the bus bike rack is represented by green and red signs, meaning
empty and occupied, respectively. Searching multiple routes are also available.

16

Figure 3-4. Search buses by route number(left), the result of available 3 slots with green
signs(right)

 3.4.4. Get a bus’s current location

Tap a bus shown in the result list to locate it on the map.

17

Figure 3-5. Get bus’s current location

3.4.5 Data source

Table 3-4. Data source in server

Bus ID Route Number System ID

1302 117 2

573 35 4

2572 1 9

18

3.4.6 API Documentation
Front-end

void _setCustomMapPin()

//Sets a custom map pin for a bus.

void _getUserLocation()

//Gets the user’s current location and shows it on the map.

void _getBusLocation(LagLng position)

//Gets the bus’s location and shows it on the map.
Parameters:
position // - the location in the form of latitude and longitude

void _setBusDataList(String input)

//Sets the global list of BusData that matches the input string and builds the drawer.
Parameters:
input // - the String to search for

Future _displaySearchDialog(BuildContext context)

// Displays the dialog for searching buses.
Parameters:
context // - the context that contains the information about the location in the tree at which

// this AlertDialog is being built.
Returns:
AlertDialog of searching buses

Future _displaySubscribeDialog(BuildContext context)

// Displays the dialog for subscribing to a bus.
Parameters:

568 38 12

2574 2 13

1301 46 21

19

context // - the context that contains the information about the location in the tree at which
// this AlertDialog is being built.
Returns:
// AlertDialog of subscribing

List<Widget> _getDrawerList(String input)

// Creates a bus list of the input route.
Parameters:
input // - the input route
Returns:
// the list of widgets including the title and the bus information

List<GestureDetector> _getBusInfoItems(List<BusData> list)

// Creates a list of the bus information.
Parameters:
list // - the list of BusData
Returns:
// the list of GestureDetectors

Row _getSlotsStatus(String input, int numSlots, int slotsFilled)

// Displays the slot status with red for an occupied slot and green for an empty slot.
Parameters:
input // - the input route
numSlots // - the total number of slots of a bike rack

slotsFilled // - the number of occupied slots
Returns:
// the row of the slot status

Back-end Interface

Future<Position> getAsyncCurrentPos()

// Returns the current position of the user.
Parameters:
none
Returns:
// the current geolocation of the user packaged as a Position structure

Future<List<BusData>> getBusesByStr(String str)

//Creates a list of the bus information by performing a string search on all available data.
Parameters:
str // – the user input
Returns:
// the list of BusData with matching fields

20

Back-end

Set<String> parseStringForBusID(String str)

// Parses the string for numbers and returns a set with searchable strings.
Parameters:
str // – the input string
Returns:
// a set of searchable strings

Future<List<BusData>> getJSONs() async

// Creates a list of all available bus information by parsing JSON data received via http.
Parameters:
// none
Returns:
// the list of all available BusData

List<BusData> parseData(Set<String> str)

// Creates a list of bus information from the larger set by finding data with fields containing the
// search strings.
Parameters:
str // – the user input
Returns:
// the list of BusData with matching fields

Future<Position> getCurrentPosition() async

// Gets the current position of the user.
Parameters:
none
Returns:
// the current geolocation of the user packaged as a Position structure

Future<DateTime>refreshData() async

// Refreshes the data stored in the instance of the backend with webdata.
Parameters:
none
Returns:
// the time of the async response

21

PART C: USAGE ANALYSIS of BUS BIKE RACK

 4 Usage Analysis of Bus Bike Rack

 4.1 Introduction

Bus Bike Rack usage analysis is performed using the data acquired from the installed sensing
systems of the 18 selected buses in the City of Gainesville Regional Transit System (RTS) between
May 1, 2018 and April 30, 2019 (12 months). Twelve buses are equipped with 3 slot racks and the
other six with 2 slots racks (total 18 buses).

The bus number and system ID of the 18 buses checked on September 18, 2018 as shown in
Figure 4-1.

Figure 4-1. List of the bus number and system ID of the 18 buses used for the data analysis

 4.2 Overall Usage Analysis

Both the total number of hours and users of bike rack usage during the study period (May 1, 2018
– April 30, 2019) are analyzed daily, weekly, monthly, and seasonally. In the plots, the blue

22

histogram shows the total number of hours of bike rack usage reading in the left y-axis and the
orange line shows the total number of users reading in the right y-axis.

 4.2.1 Daily usage analysis

Figure 1 shows the total usage data of the bus bike rack sensors plotted in a 24-hour daily span
during the entire study period. Starting as early as 4 am, the usage increases and reaches a peak
at around 8 am in the morning. The usage is sustained till 4 pm and starts to decrease. After 8
pm, the usage is rare. Note the first class of University of Florida starts 7:25 am and normal
administration offices starts 8 am and ends 5 pm. The bike rack usage trend is well matched with
the usual working hour schedule. It shows that the sensing system operates well as expected.

Figure 4-2. Daily bike rack usage

260
244 243

257

1748
1695 1669

1715

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(H
o

u
r)

Hour

Daily Bike Rack Usage

Usage Time(Hour) User Count

23

 4.2.2 Weekly usage analysis

Figure 2 shows the usage data of the bus bike rack sensors plotted in a 7-day weekly span. During
the weekdays between Monday and Friday, the usage is high compared with the weekend days
(Saturday and Sunday). We observed that the usage on Monday and Tuesday is marginally higher
than that on Wednesday, Thursday, and Friday. Please note that the bus schedules on Saturday
and Sunday are the same while the usage of Saturday is much higher than that of Sunday. This
trend might be related to Saturday events. This will be revisited later.

Figure 4-3. Weekly bike rack usage

751 784

654
721

646

4873
4710

3987

4409

3900

0

1000

2000

3000

4000

5000

6000

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

0

100

200

300

400

500

600

700

800

900

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(H
o

u
r)

Weekly Bike Rack Usage

Usage Time(Hour) User Count

24

 4.2.3 Monthly usage analysis

Figure 3 shows the usage data of the bus bike rack sensors plotted in a monthly span between
May 2018 and April 2019. It shows steady usage data all year around except February and March
2019, where the number is lower than other months. This is attributed to the reduced usage
during the Spring break (March 2 – 10, 2019) and the major hardware and software upgrade by
the research team during February and March, 2019. In April 2019, the usage is back up again.

Figure 4-4. Monthly bike rack usage

488

352
387

220 237 231
299 291

344

205

128

491

2986

1976

2252

1832
1745 1757 1698

1901
2018

1152

798

2636

0

500

1000

1500

2000

2500

3000

3500

0

100

200

300

400

500

600

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(H
o

u
r)

Monthly Bike Rack Usage

Usage time(Hour) User Count

25

 4.2.4 Seasonal usage analysis

Figure 4-5 shows the usage data of the bus bike rack sensors plotted in a seasonal span. Summer
2018 represents the data summation between May and August 2018. Fall 2018 shows September
to December 2018, and Spring 2019 shows January to April 2019. Interestingly, the Summer 2018
usage is approximately 25 to 30 % higher than that of Fall 2018 and Spring 2019. The Summer
2018 usage may be attributed to longer daylight and the reduced number of buses available
during Summer semester, which encourages or forces people to use the multimodal (bus and
bike) commuting approach. Spring 2019 usage is slightly lower than that of Fall 2018, which is in
part due to the reduced usage during the system upgrade in February and March 2019.

Figure 4-5. Seasonal bike rack usage

 4.2.5 Saturday usage analysis

Figure 4-6 shows the usage data of the bus bike rack sensors on Saturdays in a seasonal span.
The usage of Fall 2018 is higher than other seasons. The high usage in Fall may be attributed to
the home football games when more people gather in town, and the usage of the bike rack
increases. Note that seven home games occurred during Fall 2018 as shown in Figure 4-7.

1447

1058
1168

9046

7101
6604

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

200

400

600

800

1000

1200

1400

1600

Summer Fall Spring

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(H
o

u
r)

Seasonly Bike Rack Usage

Usage Time(Hour) User Count

26

Figure 4-6. Saturday bike rack usage

38

45

18

257

368

108

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

45

50

Summer Fall Spring

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(H
o

u
r)

Saturday Bike Rack Usage

Usage Time(Hour) User Count

Figure 4-7. Football home game schedule in Fall 2018

27

 4.3 Individual Bus Route-Based Usage Analysis

In this analysis, the bike rack usage based on selected bus routes are shown. The bus numbers
are Bus 2, Bus 4, Bus 8, Bus 16, Bus 13, Bus 22. To help facilitate the analysis, the map of each
bus route is shown together with the usage data.

 4.3.1 Bus #2

Bus #2 shuttles between the Rosa Parks RTS Downtown Station and Walmart Supercenter located
in Waldo Rd and NE 12th Ave, which covers eastern Gainesville as shown in Figure 6a. The data is
one collected for the entire study period. The usage trend follows the typical working hour
pattern, i.e. high usage between 7 am and 6pm as shown in Figure 6b. Note that the middle of
the bus route leads to the Gainesville-Hawthorne Trail, which offers a nice bike trail reaching the
UF campus and Shands Hospital. As this route is approximately 5 miles away from the campus,
the usage time starts an hour earlier and ends an hour later than the daily usage time shown in
Figure 1.

(a)

(b)

Figure 4-7. The map (a) and the bike rack usage data (b) of Bus #2

700
1018

2206 2005

177
156

141

114

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1000

1500

2000

2500

U
se

r
C

o
u

n
t

Time

U
sa

ge
 T

im
e

(M
in

)

Bike Rack Usage Data of Bus #2

Usage Time User Count

28

 4.3.2 Bus #4

Bus #4 shuttles between the Rosa Parks RTS Downtown Station and the Station located in N. Main
and NE 16th Ave, which covers eastern Gainesville as shown in Figure 7a. Also, a large portion of
the route overlaps with that of Bus #2 e.g. between the Rosa Parks RTS Downtown Station and
Walmart Supercenter located in Waldo Rd and NE 12th Ave. The overall usage is lower than that
of Bus #2. It shows periodicity in usage. For instance, the usage is high at 8 am, 10 am, and noon
while the usage of 9 am, 11 am, and 1 pm is low. The trend could be related to the frequency of
the bus operation.

(a)

(b)

Figure 4-8. The map (a) and the bike rack usage data (b) of Bus #4

447

600

336

126

162

82

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

100

200

300

400

500

600

700

U
se

r
C

o
u

n
t

Time

U
sa

ge
 T

im
e

(M
in

)

Bike Rack Usage Data of Bus #4

Usage Time User Count

29

 4.3.3 Bus #8

Bus #8 shuttles between the Reitz Union Station (Center of UF Campus) and the Station near
Senior Recreation Center located near in SR 121 and NW 53rd Ave, which covers northern
Gainesville as shown in Figure 8a. The bike rack usage is significantly higher than the previous
two bus routes, e.g. four times more usage than that of Bus #2 as shown in Figure 8b. One end
of bus stops is the Reitz Union station, which is the center of the campus; therefore, the route is
very popular for commuting students, staff, and faculty, and the bike rack usage is very high. Also,
the route passes Shands hospital, which would include multi-modal commuters working for the
hospital.

(a)

(b)

Figure 4-9. The map (a) and the bike rack usage data (b) of Bus #8

3257
3888 4209

392

470

540

0

100

200

300

400

500

600

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(M
in

)

Time

Bike Rack Usage Data of Bus #8

Usage Time User Count

30

 4.3.4 Bus #16

Bus #16 shuttles between Shands Hospital Station and the Station near Williston Rd and SE 4th St,
which covers southeastern Gainesville as shown in Figure 9a. This route is also very popular.
During the daytime usage is steady high as shown in Figure 9b. This indicates that multi-modal
commuters between the campus/Shands hospital and the southeastern Gainesville actively use
the bus bike racks.

(a)

(b)

Figure 4-10. The map (a) and the bike rack usage data (b) of Bus #16

6528
5509 5544

588

515 503

0

100

200

300

400

500

600

700

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(M
in

)

Time

Bike Rack Usage Data of Bus #16

Usage Time User Count

31

 4.3.5 Bus #13

Bus #13 shuttles between the Reitz Union Station and the Station near the Cottage Grove
Apartment in SW 13th St, which covers southwestern Gainesville as shown in Figure 10a.
Interestingly, while this route departs from the Reitz Union, the usage of the bike rack is a lot
lower compared with other bus routes including Reitz Union as shown in Figure 10b. One
speculation is that the distance is relatively close (e.g. less than 3 miles) for multi-modal
commuting. This may need further investigation to rule out sensor malfunction.

(a)

(b)

Figure 4-11. The map (a) and the bike rack usage data (b) of Bus #13

110
128

80

30

27

13

0

5

10

15

20

25

30

35

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(M
in

)

Time

Bike Rack Usage Data of Bus #13

Usage Time User Count

32

 4.3.6 Bus #22

Bus #22 shuttles between the Cultural Plaza Station and the Station near NW 7th Ave and NW 12th
St passing through the UF campus as shown in Figure 11a. The usage plot shows very steady and
stable usage during daytime as shown in Figure 11b. Since the route directly passes through the
campus, many students may use the bike racks between classes or for commuting.

(a)

(b)

Figure 4-12. The map (a) and the bike rack usage data (b) of Bus #22

3041 2987

4407

306 304
287

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r
C

o
u

n
t

U
sa

ge
 T

im
e

(M
in

)

Time

Bike Rack Usage Data of Bus #22

Usage Time User Count

33

 4.4 Discussion and Conclusion

The bus bike usage is mainly distributed during the daytime (7 am – 6 pm) between rush hours,
which is well matched with the class hours and working hours of the University of Florida and
Shands Hospital and is thought to be reasonable. The weekday usage is higher than weekend
usage, which shows that the main purpose of the bike usage is for commuting. Meanwhile,
Saturday usage during fall semester is higher than other seasons, which is attributed to the
football games during fall. In general, multimodal commuting is higher during summer than fall
or spring. The reduced bus operations during summer might motivate more multimodal
commuting. There are significant usage differences observed among different bus routes. Most
routes starting from or passing through the UF campus and Shands hospitals show the highest
usage of bike rack and multimodal commuting.

Due to reduced RTS service during summer, buses used during that season may benefit from
having three slot bike racks to accommodate increased bike rack demand. Buses departing from
and ending at the UF campus and Shands hospital need three-slot bike racks. For some bus routes
far from campus, two-slot bike racks may be sufficient.

34

Part D: CURRENT STATE and FINAL RECOMMENDATIONS

 5 Current State of the Project

 5.1 General Architecture

The complete BikeRide system consists of two main components: a mobile client application
and a web API server.

 5.2 Mobile Application

The mobile application was designed using the Model-View-ViewModel (MVVM) design
principle, in which the frontend implementation of the application is isolated from the backend
implementation of the application via a delegator interface. This separation of implementation
is intended to improve long-term maintenance of the application, as backend changes to
existing features can be made to the data model easily without making any corresponding
changes to the View. The addition of new UI features is also simplified, as new routines in the
UI need to only make a single function call from the ViewModel, which will then make the
necessary calls to the back end’s (Model’s) relevant routines to prepare the data for the View.

As is standard with MVVM, system function calls should remain isolated to the Model and
system UI function calls should remain isolated to the View, with the ViewModel mediating the

Figure 5-1. UML activity diagram for BikeRide mobile application

35

interaction via a single-entry point for that View feature. The ViewModel should also be
responsible for updating the state of the Model, either triggered via user events or periodically
on a timer.

5.3 Web API

Figure 5-2. UML activity diagram for the BikeRide web API

36

Data from multiple sources must be gathered to meet the basic requirements of the mobile
client application. Bus data (geolocation, route name, vehicle id, etc.) is hosted on the TransLoc
OpenAPI while the bike rack sensor data (available slots, total slots, vehicle id, etc.) is hosted on
an ECE SQL database.

There were two ways to tackle this problem. The first option was to write the mobile client
application to request data from both websites and handle parsing the data. The second option
was to write the mobile client application to request data from a single custom API that would
be responsible for collecting the relevant data from TransLoc and the ECE SQL database.

The second option was the obvious choice.

While the first option potentially allowed for the elimination of the custom API requirement
(and the maintenance costs that come with it), there were both technical and long-term
planning problems with this first approach.

The most pressing issue was the fact that there was no operational RESTAPI for the ECE SQL
database. Mobile applications (on Android and iOS) generally cannot make explicit SQL
requests, and even if they could, the ECE SQL database blocks traffic from IP addresses outside
of the University of Florida’s designated prefix. Furthermore, allowing mobile applications
direct access to the SQL database via login credentials represented a major security risk:
Android apps can be easily decompiled, analyzed, and modified, so the login credentials could
be extracted for malicious use or the application could be modified to send malicious SQL
queries to the SQL database.

The first option also presents itself as a maintenance issue. If behaviors of the dependent
systems change (either TransLoc or the ECE SQL situation), large portions of the mobile
application’s backend would have to be rewritten to fit the changes to the data format. By
moving the data gathering responsibility off of the device, we not only decrease the power
consumption of the mobile application, but we also gain control of the protocols that we use
the communicate with the application in terms of URL name schemes, API method, and data
format. This means that if changes happen to the external API format or source (but the data is
still provided), modifications can be made on the server end without having to modify the
mobile application and issue a user update.

 5.4 Moving Forward with Deployment and Long-Term Support

The project is currently in good shape for future modification and maintenance.

If the FDOT is committed to the long-term deployment and usage of the application, it is
necessary for the FDOT to do two things.

First, the necessary budget would need to be allocated for the annual maintenance of the
following:

37

• Apple Developer License ($99 per annum for individual, $299 per annum for enterprise)

• Google Developer License ($25, one-time fee)

• Cloud Services Fee ($65.34 per month**, $784.08 per annum**)

◦ Recommended hardware requirements*

▪ Always-on/Non-preemptible

▪ 2 CPU cores

▪ 8 GB RAM

◦ * Requirements based on temporary development implementation created for
application demo/proof of concept. Actual requirements may increase or decrease
depending on the production implementation (most likely increase, as increased
web traffic will need to be considered).

◦ ** Cloud price estimation based on Google Cloud Platform pricing for a non-
preemptible n1-standard-4 server in the South Carolina region with 3 years
committed usage and 30GB of storage. Prices may fluctuate as Google’s rates
change monthly.

This works out to an estimated total of $1,108.08 for the first year and $1,083.08 for
subsequent years, ignoring inflation and future price hikes to cloud service costs.

Second, it would be preferential for the FDOT to hire a full-time software engineer dedicated to
the project, or at the bare minimum, have the project added to the responsibilities of an
existing software engineer. Relying solely on part time contract workers will make it more
difficult, if not impossible, to realize the vision for the project; people come and go, and proper
documentation and coherent implementation tends to become lost in the process. Issues with
this has already been encountered: attempts to gain insight into the project’s working history
through prior collaborator McTrans were largely unfruitful: the necessary documentation and
source code for the existing web API and web application was incomplete, the original McTrans
team members could not be contacted, and McTrans was not committed to continue operating
the web API because the original grant had expired.

The nature of the work also points to the requirement of full-time maintenance. A mobile
application needs constant updates to remain usable through mobile device updates (mobile
device operating systems and hardware are constantly in flux). Web servers, even if run
through a cloud service provider like Amazon AWS and Google Cloud Platform, require real time
support to monitor and react to changes in the security, operation, and performance of the web
server in a timely manner. These sorts of demands simply cannot be fulfilled by part time
contract workers, due to the time overhead of searching for, hiring, and training workers (it can

38

take time for developers to acclimate to a system they have not seen before) every time a new
problem arises.

39

 6 Configuring, Building, and Installing the Bikeride Application

6.1 Introduction

The following will detail how to set up the build environment, configure the application to use
the latest servers and accounts, build the application, and install the application on a
development device. Instructions for setting up the build environment in Windows is not
detailed but can be found in the documentation of each tool used in the process. Simply follow
the download links to each component, and the install instructions for Windows can be found
on each download page. Detailed MacOS and Linux instructions are provided due to their
added complexity and relatively poor official documented support.

 6.2 Installing Flutter SDK

First, download the latest Flutter SDK package.

 6.2.1 MacOS/Linux

Once you have that, do

cd ~/Downloads

sudo mv ./flutter /opt/flutter

to install the application.

If you want to add it to the path, do

sudo ln -s /opt/flutter/bin/flutter /usr/local/bin/flutter

Now run

flutter

to make sure the SDK was installed correctly.

In order to make sure dependencies were installed, run

flutter precache

followed by

flutter doctor --android-licenses

You must accept the licenses to use Flutter (enter y for all).

https://flutter.dev/docs/development/tools/sdk/releases

40

 6.3 Installing Android Studio

First, download the latest Android Studio package.

 6.3.1 MacOS

Install the .dmg like you would with any other MacOS application.

 6.3.2 Linux

Once downloaded

cd ~/Downloads

sudo tar -zxf <ANDROID_STUDIO_PACKAGE_NAME> /opt/

sudo ln -s /opt/android-studio/bin/studio.sh /usr/local/bin/android-studio

to install Android Studio and add it to the executable path.

To add a desktop icon for easy access, run

android-studio

and in the GUI, navigate to Tools -> Desktop Entry at the top toolbar.

 6.4 Configuring Android Studio

Open Android Studio and go to the Plugins section under Android Studio -> Preferences (⌘,).
Search the Marketplace for Flutter and download that plugin.

Since we installed the Flutter SDK in /opt/flutter, we will have to make sure Android Studio is
aware of the path.

To do this, navigate to Android Studio -> Preferences (⌘,). Open the Languages &
Frameworks tab and select Flutter. Under the field Flutter SDK Path in the SDK block, enter

/opt/flutter

Then select Dart under the Languages & Frameworks menu tab. Under the field Dart SDK Path,
enter

/opt/flutter/bin/cache/dart-sdk

https://developer.android.com/studio

41

Because we are targeting Android Lollipop 5.0 as a minimum requirement, we will need to
install the SDK for it manually, as it is no longer default (at time of writing, Android Pie 9.0 is the
default).

Under the Appearance & Behavior tab, open the System Settings tab and select Android SDK.
Under SDK Platforms, check the box next to Android 5.0 (Lollipop) to install it and hit Apply.
Follow the install prompt and wait for completion.

If you do not have a physical Android Lollipop 5.0 device, you also need to install the Android
Lollipop 5.0 Emulator. To do this, navigate to Tools -> AVD Manager.

(If this option is missing, try restarting Android Studio to see if additional components need to
be installed, specifically Intel HAXM. You should be prompted on the bottom right hand corner.)

Select + Create Virtual Device and select any hardware to emulate (Nexus 5X is a good option)
and hit Next. In the System Image page, select the x86 Images tab and scroll down to
"Lollipop Download |*21 * | *x86_64 * | Android 5.0 (Google APIs)" and select
the Download link. Follow the install prompt and wait for completion. Once complete, select
the system image you just downloaded and hit Next. On the Android Virtual Device page in
the Emulated Performance block, change the Graphics field from Automatic to Hardware - GLES
2.0. Hit Finish to add the device to the AVD list.

 6.5 Wrapping Up the Installation

Once everything else is done, plug in an Android device (and/or iOS device if you are running
MacOS) to your computer if you have one handy.

Then run

flutter doctor

to see if everything was installed correctly.

If you did not plug in a device, expect

[!] Connected device

 ! No devices available

If there are no other errors, everything is properly configured. Otherwise, follow the
instructions that were given by the flutter command to resolve the errors.

42

6.6 Cloning the Project

 6.6.1 Using Android Studio's VCS

In the top toolbar, navigate to Android Studio -> Preferences (⌘,). Open the Version
Control tab and select GitHub. Add your GitHub account to the entry list using the + button at
the left-hand corner of the table. Follow the prompts on the display. Hit Apply and Ok.

In the top toolbar, navigate to VCS -> Git -> Clone.... Input the URL of this git

https://github/austinjkee/bikeride.git

into the field. Hit Clone. When prompted to add the newly cloned source as an Android Studio
project, select Yes.

If you accidentally selected No, go to the section on Manually Adding The Project To Android
Studio.

 6.6.2 Using Git CLI

If you want to use this option, you likely already know how to use Git CLI, but out of an
abundance of caution:

cd <PATH_TO_DEVELOPMENT_WORKSPACE>

git clone https://github/austinjkee/bikeride.git

 6.6.3 Manually Adding the Project to Android Studio

Manually adding the Flutter project to Android Studio is necessary when using Git CLI or if
something went wrong in the automated GUI cloning.

To do so, open Android Studio to the Welcome to Android Studio window.

Select the Open an existing Android Studio project option and navigate to the location of the
cloned project.

It should add it properly if Flutter was installed correctly; if Android Studio prompts to use
Gradle with the project, something is wrong with the Flutter install and

flutter doctor

should be run to verify.

If the status comes back clean, restart Android Studio and try again.

https://github/austinjkee/bikeride.git
https://github.com/austinjkee/openbikeride
https://github.com/austinjkee/openbikeride
https://github/austinjkee/bikeride.git

43

 6.7 Building the Project

 6.7.1 Ensuring the Project is Functional

The developer Google Maps API key has been removed from the project.

When ready for production, a new Google Maps API must be provided in the following files:

ios/Runner/AppDelegate.swift

) -> Bool {

 GMSServices.provideAPIKey("API_KEY_STRING_GOES_HERE")

 GeneratedPluginRegistrant.register(with: self)

android/app/src/main/AndroidManifest.xml

 <meta-data android:name="com.google.android.geo.API_KEY"

 android:value="API_KEY_STRING_GOES_HERE"/>

 6.7.2 Generating App Code and Building the App for Target Devices

Once the project has been given a valid Google Maps API key, you can build the program from
the flutter source to the target device native code.

In Android Studio's Terminal or in your preferred shell environment, navigate to the main
directory of the project and run:

flutter build

This will generate the necessary code for app creation.

 6.8 Disclaimer

Building an iOS version of the application requires an Apple computer with at least macOS
Mojave/Xcode 11.3 for up to iOS 13.2 and macOS Catalina/Xcode 11.4 for iOS 13.3 and above.

To build the application binaries for target devices, first make sure you have a valid device
attached, either physical or virtual (simulators).

44

 6.9 Android Minimum Requirements OS

Marshmallow 6.0 (API 23) Physical: 64-bit ARMv8 Compatible CPU Software: Google Play
Services Enabled

 6.10 iOS Minimum Requirements OS

iOS 12.4.5 Physical: iPhone 5S (Apple A7) or newer Software: macOS Mojave/Xcode 11.3,
macOS Catalina/Xcode 11.4 Preferred

The application can theoretically be built for iPad, Apple TV, Android TV, and as a WebApp, but
they are considered niche use cases and will not be covered here.

To make sure the device is attached and recognized, in Android Studio's Terminal or in your
preferred shell environment, run:

flutter doctor

Once you have verified that you have a device attached, proceed with running the flutter native
builder.

Optionally, you may verify that the app builds correctly before bundling.

In Android Studio's Terminal or in your preferred shell environment, navigate to the main
directory of the project and run:

flutter run

It should run on the attached device and all features should w

work if the minimum requirements are met.

To build a bundle for release, the package must be signed with a production key. Further
instructions for release can be found here:

https://flutter.dev/docs/deployment/android

https://flutter.dev/docs/deployment/android

45

PART E: SUMMARY AND CONCLUSION

 7 Summary and Conclusion

 7.1 Summary

For residents in the City of Gainesville, the Regional Transit System (RTS) is important for travel
to work, school, or other destination. But, because all destinations cannot be reached directly
using the RTS, people need to use bikes, resulting in Alachua County having the second highest
bicycle mode share in the state. An apparent problem is capacity constraint because the two-
slot bike racks currently available on RTS buses do not provide enough bike slots. Our team
collected data for rack usage to determine whether adding three-slot bike racks would resolve
this problem by, as shown in Part C.

The bike rack sensor fabrication procedure is shown in Part A, with a very detailed explanation
of each step. The estimated cost of installing the bike rack sensor in the front of each bus was
also calculated, showing a result of $121.90 per bus, The additional cost for a cellular plan to
connect the sensors was $7.72 per bus.

In Part A, we described the hardware. In Part B, we described the software aspects of a mobile
application through which passengers can get real-time data about the availability of bike slots
or buses. Part B covers the many aspects of the mobile application, including the user interface,
functional and nonfunctional requirements, and a tutorial for how to use the BikeRide mobile
application step by step. At the end of Part B, we provide the code for the application.

In Part C, we present the data collected from the bike rack sensors installed on several RTS
buses. For the one-year period from May 1, 2018, to April 30, 2019, we sorted the data by
different time conditions: daily, weekly, monthly, seasonally. Daily usage was well matched
with commuting and school hours. Weekday usage was higher than weekend usage. Usage was
low in March, apparently because of spring break. The highest seasonal usage was in summer,
but seasonal differences were not large. Interestingly, Saturday usage was highest during the
fall semester, corresponding to colleg football games. Data correlated with bus route showed
which routes most need larger bike racks.

In Part D, we suggest the current state of the project and recommendations. The detail
explanation of UML activity diagram for BikeRide mobile application and web API is shown, and
two obstacles for this project are identified. The system is expected to be operated without
malfunction and generating too much maintenance costs for each part. For this, the costs for
maintenance are mentioned with some examples about how to handle the maintenance issue.
At last point of Part D, there is guidance for configuring, building, and installing the BikeRide
application for each operation system (Android, MacOS/Linux).

46

 7.2 Conclusion

If any problems or inconveniences happen to us, we want to handle it obviously. But it cannot
be always resolved with feasible techniques when it comes to considering about the
expenditure for public facility. That is why this project has meaningful values. The reasons are
as follows.

First, we are suggesting detailed installation costs for bike rack sensors and bike rack mobile
application through examples and actual installations, which will be a great help for accurate
budgeting.

Second, from the data obtained by the installed bike rack sensors, it was possible to grasp how
many people actually use the bike rack, and it is possible to install and change the bike rack
flexibly by predicting the trend of usage change according to their needs, time, and
environment also resulting in avoiding wasting money.

Third, by making a mobile application that can check bike rack slots in real time and making it
easy, it follows the trend well-suited to the modern mobile environment, and if it can be
applied to a bus location system such as an RTS application, it is meaningful enough.

Unlike other big cities, the eco-friendly City of Gainesville has buses for transportation, but it is
quite difficult to use for those in the suburbs that are not close to the bus route. In particular,
on weekends and at night, the traffic volume of the bus is drastically reduced, so many people
experience inconvenience. To alleviate this discomfort, if we can build an environment where
people can use both buses and bicycles by having the infrastructure to use bicycles, this will
lead to a great improvement in the quality of life for the residents of the Gainesville area and
other areas wishing to consider such a system.

Possible following-up efforts and projects would include a pilot project testing the developed
cell phone app for the biker riders in the City of Gainesville and Alachua County. An extended
application could include a smart bike parking station on campus, where each bike rack in the
parking station is equipped with a smart sensing module enabling us to quantify the usage of
bikes on campus. Also, this system could be used in a eco-friendly carbon-free smart city, where
people ride bikes in a residential area and commute via a multi-modal transportation system.

	Structure Bookmarks
	
	
	
	Figure
	Figure
	PM: Gabrielle Matthews, Florida Department of Transportation (FDOT)
	PM: Gabrielle Matthews, Florida Department of Transportation (FDOT)
	PM: Gabrielle Matthews, Florida Department of Transportation (FDOT)
	

	
	PI: Yong-Kyu YK Yoon, University of Florida (UF)
	Team members:
	Team members:
	

	 Todd Schumann (UF)
	 Todd Schumann (UF)
	

	 Hyun Ho Cho (UF)
	 Hyun Ho Cho (UF)
	

	 Austin Kee (UF)
	 Austin Kee (UF)
	

	 Xiao Qin (UF)
	 Xiao Qin (UF)
	

	UFTI Director: Lily Elefteriadou

	University of Florida Testbed Initiative - Transit Components
	University of Florida Testbed Initiative - Transit Components
	University of Florida Testbed Initiative - Transit Components
	
	
	Bus Bike Rack System (BDV31-977-113)
	
	
	October 2020
	

	
	Final Report

	DISCLAIMER
	The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.
	METRIC CONVERSION TABLE
	
	Figure
	https://highways.dot.gov/research/resources/research-library/modern-metric-conversion-factors
	TECHNICAL REPORT DOCUMENTATION PAGE
	1. Report No.
	1. Report No.
	1. Report No.
	1. Report No.
	1. Report No.
	1. Report No.
	1. Report No.

	2. Government Accession No.
	2. Government Accession No.

	3. Recipient’s Catalog No.
	3. Recipient’s Catalog No.

	4. Title and Subtitle
	4. Title and Subtitle
	4. Title and Subtitle
	4. Title and Subtitle
	University of Florida Testbed Initiative - Transit Components: Bus Bike Rack System (BDV31-977-113)

	5. Report Date
	5. Report Date
	Oct. 2020

	TR
	6. Performing Organization Code:
	6. Performing Organization Code:
	

	7. Author(s)
	7. Author(s)
	7. Author(s)
	Yong-Kyu Yoon, Todd Schumann, Hyun Ho Cho, Austin Kee, Xiao Qin
	

	8. Performing Organization Report No.
	8. Performing Organization Report No.

	9. Performing Organization Name and Address
	9. Performing Organization Name and Address
	9. Performing Organization Name and Address
	University of Florida
	946 CENTER DR GAINESVILLE, FL 32611

	10. Work Unit No.
	10. Work Unit No.

	TR
	11. Contract or Grant No.
	11. Contract or Grant No.
	BDV31-977-113

	12. Sponsoring Agency Name and Address
	12. Sponsoring Agency Name and Address
	12. Sponsoring Agency Name and Address
	The State of Florida Department of Transportation,
	605 Suwannee St., Tallahassee, FL 32399

	13. Type of Report and Period
	13. Type of Report and Period
	Draft Final Report, 5/20/19 – 10/31/20

	TR
	14. Sponsoring Agency Code
	14. Sponsoring Agency Code

	15. Supplementary Notes
	15. Supplementary Notes
	15. Supplementary Notes
	

	16. Abstract
	16. Abstract
	16. Abstract
	The Alachua County, FL, has the second highest bicycle mode share in the state. Bicycle riding combined with bus riding, i.e., multimodal commuting, is very popular in the City of Gainesville (COG), FL, while quantified information of usage is very limited. Although some infrastructure could be upgraded, there is no scientific data and ground to make a good decision. For example, for certain bus routes, the standard two-slot bike racks may not be sufficient because of the large number of bus-bike commuters,
	A UF team has developed a remote real-time sensing system for the detection of bike presence on the bus bike rack using pressure sensors and readout electronics in this project. For the consideration of future usage by potential bike riders, BikeRide mobile app has been developed. The report details the hardware of sensing system, the developed app, and the bus bike rack usage data in different time scales, e.g., day, week, and season, and in different bus routes.
	The purpose of this study is to develop a bus bike rack sensing system that can detect bicycle usage per rack position and perform usage analysis and behavior study of bike users.
	The outcomes are expected to help COG increase user satisfaction of bus-bike multimodal commuters, enhance attractiveness of multimodal commuting by enabling better trip planning for bus-bike riders, and maximize cost effectiveness of infrastructure investment with help from UF’s advanced information technology (IT).
	

	17. Key Words
	17. Key Words
	17. Key Words
	Bike Rack, Sensor, Mobile App, Multimodal Commuting

	18. Distribution Statement
	18. Distribution Statement
	No restrictions.
	

	19. Security Classif. (of this report) Unclassified
	19. Security Classif. (of this report) Unclassified
	19. Security Classif. (of this report) Unclassified

	20. Security Classif. (of this page) Unclassified
	20. Security Classif. (of this page) Unclassified

	21. No. of Pages
	21. No. of Pages
	59

	22. Price
	22. Price

	Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.
	Acknowledgements
	This work was completed under FDOT contract number BDV31-977-113. The authors
	would like to acknowledge the following people for their invaluable guidance and help in the
	completion of this study: Gabrielle Matthews (FDOT), David Sherman (FDOT), Yong-Kyu Yoon (UF), Nithin Agarwal (UF), Todd Schumann (UF), Hyun Ho Cho (UF), Austin Kee (UF), Xiao Qin (UF), Lily Elefteriadou (UF), and Jesus M. Gomez (COG).
	completion of this study: Gabrielle Matthews (FDOT), David Sherman (FDOT), Yong-Kyu Yoon (UF), Nithin Agarwal (UF), Todd Schumann (UF), Hyun Ho Cho (UF), Austin Kee (UF), Xiao Qin (UF), Lily Elefteriadou (UF), and Jesus M. Gomez (COG).
	

	
	Executive Summary
	Alachua County, FL, has the second highest bicycle mode share in the state, and passengers in this city employ bicycle racks on RTS buses approximately 750 times per day. Despite this massive usage in Gainesville, FL, the system frequently faces capacity constraints. Due to safety1 and maneuverability concerns, RTS buses are equipped with two-bike racks, which mean only two bicycles can be accommodated at the same time. Although there are already three-bike racks which can be installed in front of the bus,
	1 The primary safety concern is the obstruction of headlights.
	1 The primary safety concern is the obstruction of headlights.
	1.3 Supporting Tasks and Deliverables..2
	1.3 Supporting Tasks and Deliverables..2
	1.3 Supporting Tasks and Deliverables..2
	1.3 Supporting Tasks and Deliverables..2
	4.3 Individual Bus Route-Based Usage Analysis...27
	4.3 Individual Bus Route-Based Usage Analysis...27
	4.3 Individual Bus Route-Based Usage Analysis...27

	Existing bike rack technology has two major shortfalls, which are just providing the deployment of bike racks and no real-time data on bike rack capacity. With this inconvenience, people who would like to use bike rack cannot use the bike rack if there is no availability until the next bus is coming for about 30 minutes or so.
	From this idea, our group has installed the bike rack sensing system from Jun. 2017 to Dec. 2018 to get information which can be used to detect when bus bike racks are used. Now, we have data from the bike rack sensing system so that we can perform a usage analysis and behavior study with the data collected. Furthermore, we have made the BikeRide Mobile Application which can be used for checking real-time bike rack availability, and bike rack users can take advantage of this technology for their efficient t
	We have reached the following conclusions. The bus bike rack usage is distributed during the daytime from 7 am to 6 pm, which is aligned with the commuting and/or school time. Weekday usage exceeds the weekend usage, which indicates most of bus bike rack usage is for commuting during weekdays. It is interest that the usage on Saturdays during fall semester is much more than the other semesters (spring and summer) because of the college football games in town. Usage data for several bus routes has been inclu
	
	
	Table of Contents
	DISCLAIMER..II
	METRIC CONVERSION TABLE...III
	TECHNICAL REPORT DOCUMENTATION PAGE..IV
	ACKNOWLEDGEMENTS..V
	EXECUTIVE SUMMARY...VI
	LIST OF FIGURES………. XI
	LIST OF TABLES………. XIII
	PART A: INTRODUCTION AND BACKGROUND INFORMATION…………………………………………………….1
	1 Introduction…..1
	 1.1 Background Statement..1
	 1.2 Project Objectives..2
	 1.3.1 Bicycle Rack Capacity Sensing System……………………………………………………………………………..2
	2 Bicycle Rack Occupancy Sensor System...3
	 2.1 Sensor System Fabrication...3
	 2.2 Sensing Concept...4
	 2.3 System Design.……...........5
	 2.4 Installation…….7
	 2.5 Bill of Materials…………………………………………………………………………………………………...................8
	Part B: BIKERIDE MOBILE APPLICATION..11
	3 BikeRide Mobile Application..11
	 3.1 Introduction...11
	 3.2 Requirements...11
	 3.2.1 User Requirements..11
	 3.2.2 Functional Requirements...11
	 3.2.3 Non-Functional Requirements...12
	 3.3 Wireframe..12
	 3.4 User Interface & Features..14
	 3.4.1. Main Page...14
	 3.4.2. Get a User’s Current Location...14
	 3.4.3 Search Buses by Route Number...15
	 3.4.4. Get a Bus’s Current Location...16
	 3.4.5 Data Source..17
	 3.4.6 API Documentation..18
	PART C: USAGE ANALSIS of BUS BIKE RACK..21
	4 Usage Analysis of Bus Bike Rack..21
	 4.1 Introduction...21
	 4.2 Overall Usage Analysis...21
	4.2.1 Daily Usage Analysis...22
	4.2.2 Weekly Usage Analysis...23
	4.2.3 Monthly Usage Analysis..24
	4.2.4 Seasonal Usage Analysis...25
	4.2.5 Saturday Usage Analysis...25
	 4.3.1 Bus #2...27
	4.3.2 Bus #4...28
	4.3.3 Bus #8...29
	4.3.4 Bus #16...30
	4.3.5 Bus #13...31
	4.3.6 Bus # 22..32
	 4.4 Discussion and Conclusion..33
	Part D: CURRET STATE and FINAL RECOMMENDATIONS……………………………………………...............34
	5 Current State of the Project...34
	 5.1 General Architecture...34
	 5.2 Mobile Application...34
	 5.3 Web API...35
	 5.4. Moving Forward with Deployment and Long-Term Support..36
	6 Configuring, Building, and Installing the BikeRide Application……………………………………………….39
	 6.1 Introduction………39
	 6.2 Installing Flutter SDK……………………………….………………………………………………………………………..39
	6.2.1 MacOS/Linux……………….………………………………………………………………………………………………..39
	 6.3 Installing Android Studio……………………………………………………………………………………………………40
	6.3.1 MacOS………………………….…………………………………………………………………………………………….…40
	6.3.2 Linux…………………………………………………………………….……………………………………………………….40
	 6.4 Configuring Android Studio……………………………………………………………………………………………...40
	 6.5 Wrapping up the Installation………………………………………………………………………………………….…41
	 6.6 Cloning the Project………………………………….……………………………………………………………………..…42
	 6.6.1 Using Android Studio’s VCS…………………………………….……………………………………………………..42
	 6.6.2 Using Git CLI………………………………….……………………………………………………………………………...42
	 6.6.3 Manually Adding the Project to Android Studio………………………….…………………………………42
	 6.7 Building the Project………………………………………………………………………….……………………………….43
	 6.7.1 Ensuring the Project is Functional…………………………………………………..………………………….….43
	 6.7.2 Generating App Code and Building the App for Target Devices.…………………………………….43
	 6.8 Disclaimer..…….…43
	 6.9 Android Minimum Requirements OS…………………………………………………………………………………44
	 6.10 iOS Minimum Requirements OS………………………………………………………………………………………44
	PART E: SUMMARY AND CONCLUSION………………………………………………………………………………….…45
	7 Summary and Conclusion………………………………………………………………………………………………………45
	 7.1 Summary……..45
	 7.2 Conclusion……46
	
	List of Figures
	Figure 2-1. Fabrication steps of the sensor assembly...3
	Figure 2-2. Batch fabrication of sensor assemblies..4
	Figure 2-3. Wiring diagram illustrating the occupancy sensing concept..5
	Figure 2-4. Wiring diagram of the system, excluding power connections.....................................6
	Figure 2-5. Assembled system secured in a plastic box, ready for installation..............................6
	Figure 2-6. (Left) Side panel next to the driver’s feet that contains the port to the battery compartment (outlined). (Right) View from the battery compartment of the same port (outlined)………..7
	Figure 2-7. (Left) Sensor wire fed through the front bumper of the bus to the front undercarriage. (Right) Port under the front undercarriage where the sensor wires are fed to the battery.………8
	Figure 3-1. Wireframe. Main interface (left), user’s location(top), function of searching buses (bottom-left), search result (bottom-middle), bus’s location (bottom-right)……...……………..…….13
	Figure 3-2. User interface and feature.……………………………………………………………………………………14
	Figure 3-3. User’s current location.………………………………………………………………………………………….15
	Figure 3-4. Search Buses by route number.………………………………………………………………………….….16
	Figure 3-5. Get Bus’s current location.……………………………………………………………………………………..17
	Figure 4-1. List of the bus number and system ID of the 18 buses used for the data analysis..…21
	Figure 4-2. Daily bike rack usage……………………………………………………………………………………………….22
	Figure 4-3. Weekly bike rack usage…………………………………………………………………………………………...23
	Figure 4-4. Monthly bike rack usage………………………………………………………………………………………….24
	Figure 4-5. Seasonal bike rack usage…………………………………………………………………………………………25
	Figure 4-6. Saturday bike rack usage…………………………………………………………………………………………26
	Figure 4-7. The map (a) and the bike rack usage data (b) of Bus #2………………………………………….27
	Figure 4-8. The map (a) and the bike rack usage data (b) of Bus #4………………………………………….28
	Figure 4-9. The map (a) and the bike rack usage data (b) of Bus #8…………………………………………….29
	Figure 4-10. The map (a) and the bike rack usage data (b) of Bus #16…………………………………………30
	Figure 4-11. The map (a) and the bike rack usage data (b) of Bus #13………………………………………31
	Figure 4-12. The map (a) and the bike rack usage data (b) of Bus #22……………………………………….32
	Figure 5-1. UML activity diagram for BikeRide mobile application.……………………………………….….34
	Figure 5-2. UML activity diagram for the BikeRide web API.………………………………………………….….35
	Figure 5-2. UML activity diagram for the BikeRide web API.………………………………………………….….35
	

	
	
	
	LIST OF TABLES
	Table 2-1. Bill of materials to build 20 systems ...9
	Table 2-2. Cost of the cellular plan for 20 systems...10
	Table 3-1. User Requirements..11
	Table 3-2. Functional requirements..12
	Table 3-3. Non-functional requirements..12
	Table 3-4. Data source..18
	
	PART A: INTRODUCTION AND BACKGROUND INFORMATION
	 1 Introduction
	 1.1 Background Statement
	The City of Gainesville (COG) Regional Transit System (RTS) provides bus service to the University of Florida (UF), Santa Fe College (SF), portions of unincorporated Alachua County, and the City itself. The partnership between these entities has produced remarkable results over the last two decades. National Transit Database (NTD) statistics show the region has the 14th most trips per capita in the nation2 and the most trips per revenue mile in Florida.3
	2
	2
	2
	https://fivethirtyeight.com/datalab/how-your-citys-public-transit-stacks-up/
	https://fivethirtyeight.com/datalab/how-your-citys-public-transit-stacks-up/

	

	3
	3
	http://www.fdot.gov/transit/Pages/2015TransitHandbook.pdf
	http://www.fdot.gov/transit/Pages/2015TransitHandbook.pdf

	

	4
	4
	https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B08006&prodType=table
	https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B08006&prodType=table

	

	5
	5
	http://www.fdot.gov/planning/trends/special/acs012816.pdf
	http://www.fdot.gov/planning/trends/special/acs012816.pdf

	

	6
	6
	http://www.cityclock.org/urban-cycling-mode-share/#.WJSIHlMrKUk
	http://www.cityclock.org/urban-cycling-mode-share/#.WJSIHlMrKUk

	

	7 The primary safety concern is the obstruction of headlights.
	8 There are many reasons for this. The most common reasons posited are inadequacy of the stop to store a bicycle (both safety and space) and the need for the bike on the other end of the trip. As one example, it is quite possible to have classes in abutting periods on UF’s campus that require a bicycle to be traveled between in a timely manner.
	9 The three position bicycle racks vary widely in cost but can be purchased for approximately $600 to $800.

	The COG urbanized area (UA) has been equally successful in encouraging bicycle usage and integrating this usage with transit to expand the reach of both. Data from the American Community Survey shows that Alachua County has the second highest bicycle mode share in the state.4 Automatic Passenger Counter (APC) data indicates that passengers employ bicycle racks on RTS buses approximately 750 times per day. Based on average daily ridership, at least 2% of all trips involve the use of a bicycle. This is remark
	The urbanized area’s remarkably high mode shares of both transit5 and bicycling6 has not been without its challenges. The system frequently faces capacity constraints. Because of safety7 and maneuverability concerns, typical bus bicycle racks can only store two bicycles at a time. Though FDOT recently granted transit agencies the ability to transition to larger, three-position bicycle racks, it is still in the incipient stages of being adopted. There is hesitancy to purchase the higher capacity racks becau
	As stated above, RTS relies on its APC units to determine bicycle usage. This technology has two major shortfalls:
	1. It only shows rack deployment, and
	1. It only shows rack deployment, and
	1. It only shows rack deployment, and

	2. The data is post-processed, thereby providing no real-time insight on available bike rack capacity.
	2. The data is post-processed, thereby providing no real-time insight on available bike rack capacity.

	The first shortfall leads to serious undercounting of bicycle usage.10 The second shortfall causes users who want to use a bicycle to guess whether it will be possible since there is no live information on availability. Considering several bus stops are only served every 30- to 60-minutes, there is a severe penalty for users that wait to use a bicycle rack only to be denied.
	10 Most RTS directional patterns have between 20 to 30 stops. Though likely improbable, a trip with 30 stops where the bike rack is deployed and fully utilized at the first stop could have 58 trips occur with passengers using a bicycle, but database records would only show one usage. Equally, you could have some large, untold number of trip denials because the bicycle rack is fully occupied yet the database’s single record would imply limited demand.
	10 Most RTS directional patterns have between 20 to 30 stops. Though likely improbable, a trip with 30 stops where the bike rack is deployed and fully utilized at the first stop could have 58 trips occur with passengers using a bicycle, but database records would only show one usage. Equally, you could have some large, untold number of trip denials because the bicycle rack is fully occupied yet the database’s single record would imply limited demand.

	For this initiative, we have performed the initial work on the bus bike rack sensing system from Jun. 2017 – Dec. 2019. We have successfully implemented pressure sensing systems in 18 COG buses. Some data have been acquired between May 2017 and Dec. 2018, which have been reported during the project meeting.
	 1.2. Project Objectives
	The purpose of this study is to develop a bus bike rack sensing system that can detect bicycle usage per rack position and perform usage analysis and behavior study of bike users. This will fulfill the following objectives:
	1) Increase use of ITS technology in transit.
	1) Increase use of ITS technology in transit.
	1) Increase use of ITS technology in transit.

	2) Improve transit and bicycle mode attractiveness by enabling better trip planning and increasing user satisfaction.
	2) Improve transit and bicycle mode attractiveness by enabling better trip planning and increasing user satisfaction.

	3) Maximize cost effectiveness of infrastructure investments by better understanding travel patterns of bicycle users.
	3) Maximize cost effectiveness of infrastructure investments by better understanding travel patterns of bicycle users.

	 1.3 Supporting Tasks and Deliverables
	 1.3.1 Bicycle Rack Capacity Sensing System
	UF developed the smart bus bike rack system with a pressure sensor integrated in each rack slot. However, for the sensor reliability and later maintenance, a commercially available pressure sensor is adopted for the sensor deployment to the bus bike rack.
	
	
	
	2 Bicycle Rack Occupancy Sensor System
	 2.1 Sensor System Fabrication
	To enable the systems built during this project to continue operation after completion, we elected to use commercial off-the-shelf (COTS) sensors with a simple fabrication. This allows replacement of the sensors once the systems are handed off to the responsible agency.
	The base sensor is a force sensitive resistor. When pressure is applied to the sensor head, the resistance of the sensor drops sharply. This is read by the system using a potential divider with a large series resistor to monitor occupancy and a small series resistor to monitor sensor failure (more in the sensing concept section).
	As the sensor head is fragile to sharp contact, the sensor is protected by aluminum bars. These also serve to concentrate the pressure to the sensor head, allowing a small, 0.25” force sensitive resistor to measure a 12” area along the tire support on the rack. Silicone adhesive is used to assemble the sensor assembly and to seal the sensor from the elements. The fabrication is as follows:
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.
	A) Solder wire connections to COTS sensor and crimp opposite ends into RJ11 connector. Leave approximately 10-15 feet of wire.

	
	
	Figure

	TBody
	TR
	B) Use silicone to secure the sensor to the aluminum bar with the head approximately at the center. Also secure the end of the wiring to the aluminum bar. Allow silicone to dry.
	B) Use silicone to secure the sensor to the aluminum bar with the head approximately at the center. Also secure the end of the wiring to the aluminum bar. Allow silicone to dry.
	B) Use silicone to secure the sensor to the aluminum bar with the head approximately at the center. Also secure the end of the wiring to the aluminum bar. Allow silicone to dry.
	B) Use silicone to secure the sensor to the aluminum bar with the head approximately at the center. Also secure the end of the wiring to the aluminum bar. Allow silicone to dry.

	TR
	C) Use silicone to seal the sensor and exposed connections. Allow silicone to dry.
	C) Use silicone to seal the sensor and exposed connections. Allow silicone to dry.
	C) Use silicone to seal the sensor and exposed connections. Allow silicone to dry.
	C) Use silicone to seal the sensor and exposed connections. Allow silicone to dry.

	TR
	D) Create the plunger over the sensor head using silicone. Add height-matched silicone bumps at each end of the aluminum bar. Allow the silicone to dry.
	D) Create the plunger over the sensor head using silicone. Add height-matched silicone bumps at each end of the aluminum bar. Allow the silicone to dry.
	D) Create the plunger over the sensor head using silicone. Add height-matched silicone bumps at each end of the aluminum bar. Allow the silicone to dry.
	D) Create the plunger over the sensor head using silicone. Add height-matched silicone bumps at each end of the aluminum bar. Allow the silicone to dry.

	TR
	E) Using a thin layer of silicone, secure the top aluminum bar to the rest of the sensor. Do NOT press into place. Allow silicone to dry.
	E) Using a thin layer of silicone, secure the top aluminum bar to the rest of the sensor. Do NOT press into place. Allow silicone to dry.
	E) Using a thin layer of silicone, secure the top aluminum bar to the rest of the sensor. Do NOT press into place. Allow silicone to dry.
	E) Using a thin layer of silicone, secure the top aluminum bar to the rest of the sensor. Do NOT press into place. Allow silicone to dry.

	TR
	F) Coat a layer of silicone around each end of the sensor assembly to ensure the sensor stays intact. Allow silicone to dry.
	F) Coat a layer of silicone around each end of the sensor assembly to ensure the sensor stays intact. Allow silicone to dry.
	F) Coat a layer of silicone around each end of the sensor assembly to ensure the sensor stays intact. Allow silicone to dry.
	F) Coat a layer of silicone around each end of the sensor assembly to ensure the sensor stays intact. Allow silicone to dry.

	Figure 2-1. Fabrication steps of the sensor assembly.
	Although the fabrication is simple and very tolerant especially as the sensors are individually thresholded, the full process is time consuming since the silicone will take about 12-24 hours to fully cure at each step. It is therefore recommended to produce many sensors simultaneously to increase throughput. Allowing the silicone to fully cure is critical during assembly as it will shrink slightly during the curing process, leading to the sensors reading as always triggered. By fully curing the silicone at
	
	Figure
	Figure 2-2. Batch fabrication of sensor assemblies.
	 2.2 Sensing Concept
	Due to the large (orders of magnitude) change in resistance of the COTS sensor, extreme accuracy is not necessary when measuring resistance, eliminating the need for a Whetstone bridge configuration. Instead, a large resistor (100 kΩ) is placed in series with the sensor. A constant voltage is placed across the two resistors and the voltage is measured between them. When untriggered, the sensor is highly resistive and thus the measured voltage is close to the applied voltage. When triggered, the sensor’s res
	To detect cases where a sensor is shorted (the voltage is bypassing the sensor element), a second resistor is connected in the same manner, but with a resistance comparable to the lowest resistance the sensor can achieve (approximately 2 kΩ for these COTS sensors). When the voltage measured between this resistor and the sensor is measured, it should read a non-zero value. However, if the sensor is shorted, a very low value will be read as the voltage drop across sensor itself is 0 V. Again, this value is th
	Unfortunately, due to the high resistance of the sensor when not triggered, checking for open circuits (sensor has become disconnected) is not feasible without additional circuitry such as buffering opamps. In this case, the systems will rely on user-reported problems. However, thus far, instances of this happening have been rare.
	
	Figure
	Figure 2-3. Wiring diagram illustrating the occupancy sensing concept.
	 2.3 System Design
	Due to incompatibility with existing systems and reluctance of vendors to allow our sensors to interface with their systems, a stand-alone system was developed to read the bicycle rack occupancy sensors. The base platform was chosen to be an Arduino. This keeps the components easily replaceable, but also offers the option of designing a custom circuit board if the systems will be deployed in a high enough quantity to warrant it.
	For communication, a SIM900 module was chosen. The SIM900 is limited to the 2G network, although this is not an issue with the amount of data being communicated. As T-Mobile is the only carrier currently supporting its 2G network, Ting, which uses T-Mobile’s network, was chosen as the carrier, due to their flexibility with a high number of low-data devices.
	Since the mobile network can have blind spots, a copy of all data and log files is stored on the system in addition to data being sent. This is accomplished with an SD card module for nonvolatile storage. The amount of data being stored is relatively low, so an 8GB or 16GB SD card is sufficient for many months (the server also has the option to remotely erase the SD card). The SD card also allows data to be stored temporarily when out of coverage and transmitted as stale data once coverage resumes.
	To alleviate sensor replacement work, two small custom boards were designed to branch the sensor ports away from the system and sensors. The first board, which is placed with the system, contains the necessary measurement resistors, headers for interfacing with the Arduino, and a CAT5 port. A CAT5 cable is then used to route the necessary connections (see installation) to the battery compartment of the bus. The second board, termed routing box, located in the battery compartment, splits the connections into
	12VDC power is down converted to 5VDC using a COTS USB car charger. These provide all the necessary buffering to handle the power surge and dip when the bus starts up. The power and ground terminals are soldered to wires with spade connectors to connect to the bus’s power terminals. Ideally, the car charger would contain two ports, allowing the main system and the
	SIM900 to be on different lines. The SIM900 input current during transmission in poor coverage can cause a brownout in the Arduino, forcing a system reset, if it is powered from the Arduino. This can be alleviated by splicing a secondary wire to the USB 5VDC feeding the Arduino if only a single port is available on the car charger.
	
	Figure
	Figure 2-4. Wiring diagram of the system, excluding power connections.
	Once the boards are wired together, the system is assembled in a small plastic box with holed cut to allow external wiring. The individual components are secured with silicone or hot glue except for the SIM900 module, which allows replacement of the SIM card if necessary. Additionally, the SD card module should be placed in such a way that it allows the SD card to be removed and replaced, as necessary. Finally, an inline fuse should be placed on the 12VDC power line coming into the system as it is not guara
	
	Figure
	Figure 2-5. Assembled system secured in a plastic box, ready for installation.
	 2.4 Installation
	The installed systems are placed in the electronics cabinet of the bus, usually located directly behind the driver. The power terminals are routed out of the system and attached to the keyed power and ground terminals using spade connectors. The system is then tested to ensure that data is being transmitted.
	The CAT5 connection is then routed along the left side of the bus to the cabinet near the gas and brake pedals. These cabinets are accessed by removing the panels along the left side of the bus. The CAT5 connection is then routed into the battery compartment through a port used for power connections for the other bus electronics in this cabinet.
	
	
	
	Figure

	
	
	Figure

	Figure
	Figure
	Figure 2-6. (Left) Side panel next to the driver’s feet that contains the port to the battery compartment (outlined). (Right) View from the battery compartment of the same port (outlined).
	Once in the battery compartment, the routing box is attached to the CAT5 connection. In some cases, the port is not sufficiently large or open to pass a terminated CAT5 cable. In this case, it is necessary to pass the unterminated CAT5 cable, then crimp the connector once it is passed.
	The sensors are tested with a spare system directly prior to installation. Once functionality is verified, the sensors are secured to the front or back tire support of the rack using a combination of silicone and tie straps. It should be noted that the tie straps should not be over tightened and should only be placed at the very ends of the sensor assemblies to prevent them from triggering the sensor. The silicone adhesive attaches the sensor to the rack and the tie straps reduce the shear on the sensor ass
	Once attached, the sensor wire is routed along the bars of the bike rack, using tie straps to secure it at any bend and to keep it taut. This is extremely important as the bus wash will rip the sensor off if there is any slack in the wire. The wire is then routed either under or through the front bumper (depending on the bus model) to the front undercarriage, where it is secured using another tie strap. Care should be taken near the hinge for the bike rack: enough slack should be left so the bike rack can b
	
	Figure
	Figure
	Figure 2-7. (Left) Sensor wire fed through the front bumper of the bus to the front undercarriage. (Right) Port under the front undercarriage where the sensor wires are fed to the battery compartment.
	The system is then fully tested again by powering up the bus. Each sensor is tested, followed by every combination of sensors. The server is updated to map the system number to the installed bus and the number of slots is set. If the system is set to auto-threshold the installation is complete. Otherwise, the threshold is determined for each sensor and sent to the system through the server.
	 2.5 Bill of Materials
	As mentioned above, to allow the responsible agency to either maintain or increase the number of systems, every part used was commercially available, except for the small custom boards used to branch out the sensor ports. More of these boards can be ordered with the Gerber files included. Below is a bill of materials for the systems.
	
	Table 2-1. Bill of materials to build 20 systems
	Part
	Part
	Part
	Part
	Part

	Cost
	Cost

	Number
	Number

	Subtotal
	Subtotal

	Arduino Mega
	Arduino Mega
	Arduino Mega
	Arduino Mega

	$15.00
	$15.00

	20
	20

	$300.00
	$300.00

	SIM900 GSM Module
	SIM900 GSM Module
	SIM900 GSM Module

	$33.00
	$33.00

	20
	20

	$660.00
	$660.00

	MicroSD Card Module (5 pack)
	MicroSD Card Module (5 pack)
	MicroSD Card Module (5 pack)

	$8.29
	$8.29

	4
	4

	$33.16
	$33.16

	SD Card
	SD Card
	SD Card
	SD Card
	SD Card

	$6.00
	$6.00

	20
	20

	$120.00
	$120.00

	Ting SIM Card
	Ting SIM Card
	Ting SIM Card

	$0.00
	$0.00

	20
	20

	$0.00
	$0.00

	USB Power Supply (2 pack)
	USB Power Supply (2 pack)
	USB Power Supply (2 pack)

	$9.00
	$9.00

	10
	10

	$90.00
	$90.00

	Resistors
	Resistors
	Resistors

	$10.00
	$10.00

	1
	1

	$10.00
	$10.00

	Ethernet Cable (500 ft)
	Ethernet Cable (500 ft)
	Ethernet Cable (500 ft)

	$20.00
	$20.00

	2
	2

	$40.00
	$40.00

	Phone Cable (500 ft)
	Phone Cable (500 ft)
	Phone Cable (500 ft)

	$10.00
	$10.00

	3
	3

	$30.00
	$30.00

	Force Sensitive Resistor
	Force Sensitive Resistor
	Force Sensitive Resistor

	$4.70
	$4.70

	60
	60

	$282.00
	$282.00

	Solder
	Solder
	Solder

	$20.00
	$20.00

	1
	1

	$20.00
	$20.00

	RJ11 Jacks (20 pack)
	RJ11 Jacks (20 pack)
	RJ11 Jacks (20 pack)

	$8.19
	$8.19

	3
	3

	$24.57
	$24.57

	RJ 45 Jacks (39 pack)
	RJ 45 Jacks (39 pack)
	RJ 45 Jacks (39 pack)

	$12.28
	$12.28

	2
	2

	$24.56
	$24.56

	Routing Box Board
	Routing Box Board
	Routing Box Board

	$110.00
	$110.00

	1
	1

	$110.00
	$110.00

	TR
	System Board
	System Board

	TR
	Sensor Board
	Sensor Board

	Silicone
	Silicone
	Silicone

	$5.92
	$5.92

	9
	9

	$53.28
	$53.28

	8ft Aluminum Bar
	8ft Aluminum Bar
	8ft Aluminum Bar

	$13.98
	$13.98

	15
	15

	$209.70
	$209.70

	Wire Connections
	Wire Connections
	Wire Connections

	$7.68
	$7.68

	4
	4

	$30.72
	$30.72

	Packaging
	Packaging
	Packaging

	$20.00
	$20.00

	20
	20

	$400.00
	$400.00

	Total Cost:
	Total Cost:
	Total Cost:

	$2,437.99
	$2,437.99

	Cost Per Bus:
	Cost Per Bus:
	Cost Per Bus:

	$121.90
	$121.90

	In addition to the building cost, each system requires a cellular plan to communicate on the 2G network. Given the low data rate and quantity of systems, Ting was chosen to be the provider as they charge a small fee per line and group the data (approximately 20MB per month for 20 buses). The following table includes the costs associated with the cellular plan with Ting.
	
	
	
	Table 2-2. Cost of the cellular plan for 20 systems
	Ting Service
	Ting Service
	Ting Service
	Ting Service
	Ting Service

	Cost (Monthly)
	Cost (Monthly)

	Number
	Number

	Subtotal (monthly)
	Subtotal (monthly)

	SIM Activation
	SIM Activation
	SIM Activation
	SIM Activation

	$6.00
	$6.00

	20
	20

	$120.00
	$120.00

	Data
	Data
	Data

	$10.00
	$10.00

	1
	1

	$10.00
	$10.00

	Taxes
	Taxes
	Taxes

	$1.22
	$1.22

	20
	20

	$24.40
	$24.40

	Total Monthly Cost:
	Total Monthly Cost:
	Total Monthly Cost:

	$154.40
	$154.40

	Total Monthly Cost Per Bus:
	Total Monthly Cost Per Bus:
	Total Monthly Cost Per Bus:

	$7.72
	$7.72

	
	Part B: BIKERIDE MOBILE APPLICATION
	 3 BikeRide Mobile Application
	 3.1 Introduction
	RTS buses are one of the most used transportation mode in the City of Gainesville, and the bike racks provide convenience for those passengers who are taking a bus with their bike. Because the number of bike rack slots is limited, it is good for those passengers to know the bike rack availability before they take a bus. BikeRide is a mobile application used for checking real-time bike rack availability on RTS buses, built using Flutter to support both iOS and Android platforms developed by the UF team. With
	 3.2 Requirements
	 3.2.1 User Requirements
	This table is for what users need and require for BikeRide Mobile Application.
	Table 3-1. User requirements
	Req. ID
	Req. ID
	Req. ID
	Req. ID
	Req. ID

	User Requirements
	User Requirements

	3.2.1.1
	3.2.1.1
	3.2.1.1

	The app shall provide a user’s current location
	The app shall provide a user’s current location

	3.2.1.2
	3.2.1.2
	3.2.1.2

	The app shall allow the user to search buses by route number
	The app shall allow the user to search buses by route number

	3.2.1.3
	3.2.1.3
	3.2.1.3

	The app shall display bike rack availability of each running bus of a certain route
	The app shall display bike rack availability of each running bus of a certain route

	3.2.1.4
	3.2.1.4
	3.2.1.4

	The app shall be able to locate a bus
	The app shall be able to locate a bus

	3.2.1.5
	3.2.1.5
	3.2.1.5

	The app shall allow the user to browse the map
	The app shall allow the user to browse the map

	 3.2.2 Functional Requirements
	This table is for what BikeRide Mobile Application must meet the requirements for functions.
	Table 3-2. Functional requirements
	Req. ID
	Req. ID
	Req. ID
	Req. ID
	Req. ID

	Functional Requirements
	Functional Requirements

	3.2.2.1
	3.2.2.1
	3.2.2.1

	The app shall provide a user’s current location after the user clicking the locating button
	The app shall provide a user’s current location after the user clicking the locating button

	3.2.2.2
	3.2.2.2
	3.2.2.2

	A list of bus information shall be provided after a valid user input of route number(s), including the bike rack availability of the bus
	A list of bus information shall be provided after a valid user input of route number(s), including the bike rack availability of the bus

	3.2.2.3
	3.2.2.3
	3.2.2.3

	The bike rack availability shall include the status of each slots (empty/occupied)
	The bike rack availability shall include the status of each slots (empty/occupied)

	3.2.2.4
	3.2.2.4
	3.2.2.4

	The app shall provide a bus’s current location after the user clicking the bus information in the searching results
	The app shall provide a bus’s current location after the user clicking the bus information in the searching results

	3.2.2.5
	3.2.2.5
	3.2.2.5

	The map shall be displayed as the background of the app
	The map shall be displayed as the background of the app

	 3.2.3 Non-Functional Requirements
	This table is for basic requirements which BikeRide Mobile Application must operate.
	Table 3-3. Non-functional requirements
	Req. ID
	Req. ID
	Req. ID
	Req. ID
	Req. ID

	Non-Functional Requirements
	Non-Functional Requirements

	3.2.3.1
	3.2.3.1
	3.2.3.1

	Performance: finish loading app within 5 seconds
	Performance: finish loading app within 5 seconds

	3.2.3.2
	3.2.3.2
	3.2.3.2

	Scalability: be able to handle data for all the running buses
	Scalability: be able to handle data for all the running buses

	 3.3 Wireframe
	The wireframe provides an overview of the layout, user flow and functionality of the app.
	
	Figure
	Figure 3-1. Wireframe. Main interface(left), user’s location(top), function of searching buses(bottom-left), search result(bottom-middle), bus’s location(bottom-right)
	 3.4 User Interface & Features
	 3.4.1. Main page
	A map of Gainesville is shown, with UF campus as the center by default.
	
	Figure
	Figure
	Figure 3-2. User Interface and Feature
	 3.4.2. Get a user’s current location
	Tap the button on the bottom-left to get the user’s current location.
	
	Figure
	Figure
	Figure 3-3. User’s current location
	 3.4.3 Search buses by route number
	Tap the button on the bottom-right to search buses by route number. Enter a bus route number in the search bar to check all the running buses with sensors of the certain route. The availability of each slot of the bus bike rack is represented by green and red signs, meaning empty and occupied, respectively. Searching multiple routes are also available.
	
	Figure
	Figure
	Figure 3-4. Search buses by route number(left), the result of available 3 slots with green signs(right)
	
	 3.4.4. Get a bus’s current location
	Tap a bus shown in the result list to locate it on the map.
	
	Figure
	Figure
	Figure 3-5. Get bus’s current location
	3.4.5 Data source
	
	Table 3-4. Data source in server
	Bus ID
	Bus ID
	Bus ID
	Bus ID
	Bus ID

	Route Number
	Route Number

	System ID
	System ID

	1302
	1302
	1302

	117
	117

	2
	2

	573
	573
	573

	35
	35

	4
	4

	2572
	2572
	2572

	1
	1

	9
	9

	568
	568
	568
	568
	568

	38
	38

	12
	12

	2574
	2574
	2574

	2
	2

	13
	13

	1301
	1301
	1301

	46
	46

	21
	21

	
	3.4.6 API Documentation
	Front-end
	void _setCustomMapPin()
	//Sets a custom map pin for a bus.
	
	void _getUserLocation()
	//Gets the user’s current location and shows it on the map.
	
	void _getBusLocation(LagLng position)
	//Gets the bus’s location and shows it on the map.
	Parameters:
	position // - the location in the form of latitude and longitude
	
	void _setBusDataList(String input)
	//Sets the global list of BusData that matches the input string and builds the drawer.
	Parameters:
	input // - the String to search for
	
	Future _displaySearchDialog(BuildContext context)
	// Displays the dialog for searching buses.
	Parameters:
	context // - the context that contains the information about the location in the tree at which // this AlertDialog is being built.
	Returns:
	AlertDialog of searching buses
	
	Future _displaySubscribeDialog(BuildContext context)
	// Displays the dialog for subscribing to a bus.
	Parameters:
	context // - the context that contains the information about the location in the tree at which // this AlertDialog is being built.
	Returns:
	// AlertDialog of subscribing
	
	List<Widget> _getDrawerList(String input)
	// Creates a bus list of the input route.
	Parameters:
	input // - the input route
	Returns:
	// the list of widgets including the title and the bus information
	
	List<GestureDetector> _getBusInfoItems(List<BusData> list)
	// Creates a list of the bus information.
	Parameters:
	list // - the list of BusData
	Returns:
	// the list of GestureDetectors
	
	Row _getSlotsStatus(String input, int numSlots, int slotsFilled)
	// Displays the slot status with red for an occupied slot and green for an empty slot.
	Parameters:
	input // - the input route
	numSlots // - the total number of slots of a bike rack
	slotsFilled // - the number of occupied slots
	Returns:
	// the row of the slot status
	Back-end Interface
	Future<Position> getAsyncCurrentPos()
	// Returns the current position of the user.
	Parameters:
	none
	Returns:
	// the current geolocation of the user packaged as a Position structure
	
	Future<List<BusData>> getBusesByStr(String str)
	//Creates a list of the bus information by performing a string search on all available data.
	Parameters:
	str // – the user input
	Returns:
	// the list of BusData with matching fields
	Back-end
	Set<String> parseStringForBusID(String str)
	// Parses the string for numbers and returns a set with searchable strings.
	Parameters:
	str // – the input string
	Returns:
	// a set of searchable strings
	
	Future<List<BusData>> getJSONs() async
	// Creates a list of all available bus information by parsing JSON data received via http.
	Parameters:
	// none
	Returns:
	// the list of all available BusData
	
	List<BusData> parseData(Set<String> str)
	// Creates a list of bus information from the larger set by finding data with fields containing the // search strings.
	Parameters:
	str // – the user input
	Returns:
	// the list of BusData with matching fields
	
	Future<Position> getCurrentPosition() async
	// Gets the current position of the user.
	Parameters:
	none
	Returns:
	// the current geolocation of the user packaged as a Position structure
	
	Future<DateTime>refreshData() async
	// Refreshes the data stored in the instance of the backend with webdata.
	Parameters:
	none
	Returns:
	// the time of the async response
	
	
	PART C: USAGE ANALYSIS of BUS BIKE RACK
	 4 Usage Analysis of Bus Bike Rack
	 4.1 Introduction
	Bus Bike Rack usage analysis is performed using the data acquired from the installed sensing systems of the 18 selected buses in the City of Gainesville Regional Transit System (RTS) between May 1, 2018 and April 30, 2019 (12 months). Twelve buses are equipped with 3 slot racks and the other six with 2 slots racks (total 18 buses).
	The bus number and system ID of the 18 buses checked on September 18, 2018 as shown in Figure 4-1.
	
	Figure
	Figure 4-1. List of the bus number and system ID of the 18 buses used for the data analysis
	 4.2 Overall Usage Analysis
	Both the total number of hours and users of bike rack usage during the study period (May 1, 2018 – April 30, 2019) are analyzed daily, weekly, monthly, and seasonally. In the plots, the blue
	histogram shows the total number of hours of bike rack usage reading in the left y-axis and the orange line shows the total number of users reading in the right y-axis.
	 4.2.1 Daily usage analysis
	Figure 1 shows the total usage data of the bus bike rack sensors plotted in a 24-hour daily span during the entire study period. Starting as early as 4 am, the usage increases and reaches a peak at around 8 am in the morning. The usage is sustained till 4 pm and starts to decrease. After 8 pm, the usage is rare. Note the first class of University of Florida starts 7:25 am and normal administration offices starts 8 am and ends 5 pm. The bike rack usage trend is well matched with the usual working hour schedu
	
	Chart
	Span
	260
	260
	260

	Span
	244
	244
	244

	Span
	243
	243
	243

	Span
	257
	257
	257

	Span
	1748
	1748
	1748

	Span
	1695
	1695
	1695

	Span
	1669
	1669
	1669

	Span
	1715
	1715
	1715

	0
	0
	0

	200
	200
	200

	400
	400
	400

	600
	600
	600

	800
	800
	800

	1000
	1000
	1000

	1200
	1200
	1200

	1400
	1400
	1400

	1600
	1600
	1600

	1800
	1800
	1800

	2000
	2000
	2000

	0
	0
	0

	50
	50
	50

	100
	100
	100

	150
	150
	150

	200
	200
	200

	250
	250
	250

	300
	300
	300

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	User Count
	User Count
	User Count

	Usage Time (Hour)
	Usage Time (Hour)
	Usage Time (Hour)

	Hour
	Hour
	Hour

	Daily Bike Rack Usage
	Daily Bike Rack Usage
	Daily Bike Rack Usage

	Span
	Usage Time(Hour)
	Usage Time(Hour)
	Usage Time(Hour)

	Span
	User Count
	User Count
	User Count

	Span

	Figure 4-2. Daily bike rack usage
	
	 4.2.2 Weekly usage analysis
	Figure 2 shows the usage data of the bus bike rack sensors plotted in a 7-day weekly span. During the weekdays between Monday and Friday, the usage is high compared with the weekend days (Saturday and Sunday). We observed that the usage on Monday and Tuesday is marginally higher than that on Wednesday, Thursday, and Friday. Please note that the bus schedules on Saturday and Sunday are the same while the usage of Saturday is much higher than that of Sunday. This trend might be related to Saturday events. Thi
	
	Chart
	Span
	751
	751
	751

	Span
	784
	784
	784

	Span
	654
	654
	654

	Span
	721
	721
	721

	Span
	646
	646
	646

	Span
	4873
	4873
	4873

	Span
	4710
	4710
	4710

	Span
	3987
	3987
	3987

	Span
	4409
	4409
	4409

	Span
	3900
	3900
	3900

	0
	0
	0

	1000
	1000
	1000

	2000
	2000
	2000

	3000
	3000
	3000

	4000
	4000
	4000

	5000
	5000
	5000

	6000
	6000
	6000

	Sunday
	Sunday
	Sunday

	Monday
	Monday
	Monday

	Tuesday
	Tuesday
	Tuesday

	Wednesday
	Wednesday
	Wednesday

	Thursday
	Thursday
	Thursday

	Friday
	Friday
	Friday

	Saturday
	Saturday
	Saturday

	0
	0
	0

	100
	100
	100

	200
	200
	200

	300
	300
	300

	400
	400
	400

	500
	500
	500

	600
	600
	600

	700
	700
	700

	800
	800
	800

	900
	900
	900

	User Count
	User Count
	User Count

	Usage Time (Hour)
	Usage Time (Hour)
	Usage Time (Hour)

	Weekly Bike Rack Usage
	Weekly Bike Rack Usage
	Weekly Bike Rack Usage

	Span
	Usage Time(Hour)
	Usage Time(Hour)
	Usage Time(Hour)

	Span
	User Count
	User Count
	User Count

	Span

	Figure 4-3. Weekly bike rack usage
	
	 4.2.3 Monthly usage analysis
	Figure 3 shows the usage data of the bus bike rack sensors plotted in a monthly span between May 2018 and April 2019. It shows steady usage data all year around except February and March 2019, where the number is lower than other months. This is attributed to the reduced usage during the Spring break (March 2 – 10, 2019) and the major hardware and software upgrade by the research team during February and March, 2019. In April 2019, the usage is back up again.
	
	Chart
	Span
	488
	488
	488

	Span
	352
	352
	352

	Span
	387
	387
	387

	Span
	220
	220
	220

	Span
	237
	237
	237

	Span
	231
	231
	231

	Span
	299
	299
	299

	Span
	291
	291
	291

	Span
	344
	344
	344

	Span
	205
	205
	205

	Span
	128
	128
	128

	Span
	491
	491
	491

	Span
	2986
	2986
	2986

	Span
	1976
	1976
	1976

	Span
	2252
	2252
	2252

	Span
	1832
	1832
	1832

	Span
	1745
	1745
	1745

	Span
	1757
	1757
	1757

	Span
	1698
	1698
	1698

	Span
	1901
	1901
	1901

	Span
	2018
	2018
	2018

	Span
	1152
	1152
	1152

	Span
	798
	798
	798

	Span
	2636
	2636
	2636

	0
	0
	0

	500
	500
	500

	1000
	1000
	1000

	1500
	1500
	1500

	2000
	2000
	2000

	2500
	2500
	2500

	3000
	3000
	3000

	3500
	3500
	3500

	0
	0
	0

	100
	100
	100

	200
	200
	200

	300
	300
	300

	400
	400
	400

	500
	500
	500

	600
	600
	600

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	Textbox
	P
	Span

	User Count
	User Count
	User Count

	Usage Time (Hour)
	Usage Time (Hour)
	Usage Time (Hour)

	Monthly Bike Rack Usage
	Monthly Bike Rack Usage
	Monthly Bike Rack Usage

	Span
	Usage time(Hour)
	Usage time(Hour)
	Usage time(Hour)

	Span
	User Count
	User Count
	User Count

	Span

	Figure 4-4. Monthly bike rack usage
	
	 4.2.4 Seasonal usage analysis
	Figure 4-5 shows the usage data of the bus bike rack sensors plotted in a seasonal span. Summer 2018 represents the data summation between May and August 2018. Fall 2018 shows September to December 2018, and Spring 2019 shows January to April 2019. Interestingly, the Summer 2018 usage is approximately 25 to 30 % higher than that of Fall 2018 and Spring 2019. The Summer 2018 usage may be attributed to longer daylight and the reduced number of buses available during Summer semester, which encourages or forces
	
	Chart
	Span
	1447
	1447
	1447

	Span
	1058
	1058
	1058

	Span
	1168
	1168
	1168

	Span
	9046
	9046
	9046

	Span
	7101
	7101
	7101

	Span
	6604
	6604
	6604

	0
	0
	0

	1000
	1000
	1000

	2000
	2000
	2000

	3000
	3000
	3000

	4000
	4000
	4000

	5000
	5000
	5000

	6000
	6000
	6000

	7000
	7000
	7000

	8000
	8000
	8000

	9000
	9000
	9000

	10000
	10000
	10000

	0
	0
	0

	200
	200
	200

	400
	400
	400

	600
	600
	600

	800
	800
	800

	1000
	1000
	1000

	1200
	1200
	1200

	1400
	1400
	1400

	1600
	1600
	1600

	Summer
	Summer
	Summer

	Fall
	Fall
	Fall

	Spring
	Spring
	Spring

	User Count
	User Count
	User Count

	Usage Time (Hour)
	Usage Time (Hour)
	Usage Time (Hour)

	Seasonly Bike Rack Usage
	Seasonly Bike Rack Usage
	Seasonly Bike Rack Usage

	Span
	Usage Time(Hour)
	Usage Time(Hour)
	Usage Time(Hour)

	Span
	User Count
	User Count
	User Count

	Span

	Figure 4-5. Seasonal bike rack usage
	 4.2.5 Saturday usage analysis
	Figure 4-6 shows the usage data of the bus bike rack sensors on Saturdays in a seasonal span. The usage of Fall 2018 is higher than other seasons. The high usage in Fall may be attributed to the home football games when more people gather in town, and the usage of the bike rack increases. Note that seven home games occurred during Fall 2018 as shown in Figure 4-7.
	
	Chart
	Span
	38
	38
	38

	Span
	45
	45
	45

	Span
	18
	18
	18

	Span
	257
	257
	257

	Span
	368
	368
	368

	Span
	108
	108
	108

	0
	0
	0

	50
	50
	50

	100
	100
	100

	150
	150
	150

	200
	200
	200

	250
	250
	250

	300
	300
	300

	350
	350
	350

	400
	400
	400

	0
	0
	0

	5
	5
	5

	10
	10
	10

	15
	15
	15

	20
	20
	20

	25
	25
	25

	30
	30
	30

	35
	35
	35

	40
	40
	40

	45
	45
	45

	50
	50
	50

	Summer
	Summer
	Summer

	Fall
	Fall
	Fall

	Spring
	Spring
	Spring

	User Count
	User Count
	User Count

	Usage Time (Hour)
	Usage Time (Hour)
	Usage Time (Hour)

	Saturday Bike Rack Usage
	Saturday Bike Rack Usage
	Saturday Bike Rack Usage

	Span
	Usage Time(Hour)
	Usage Time(Hour)
	Usage Time(Hour)

	Span
	User Count
	User Count
	User Count

	Span

	Figure 4-6. Saturday bike rack usage
	Figure 4-7. Football home game schedule in Fall 2018
	Figure 4-7. Football home game schedule in Fall 2018
	Figure

	Figure
	Figure
	Figure
	Figure
	 4.3 Individual Bus Route-Based Usage Analysis
	In this analysis, the bike rack usage based on selected bus routes are shown. The bus numbers are Bus 2, Bus 4, Bus 8, Bus 16, Bus 13, Bus 22. To help facilitate the analysis, the map of each bus route is shown together with the usage data.
	 4.3.1 Bus #2
	Bus #2 shuttles between the Rosa Parks RTS Downtown Station and Walmart Supercenter located in Waldo Rd and NE 12th Ave, which covers eastern Gainesville as shown in Figure 6a. The data is one collected for the entire study period. The usage trend follows the typical working hour pattern, i.e. high usage between 7 am and 6pm as shown in Figure 6b. Note that the middle of the bus route leads to the Gainesville-Hawthorne Trail, which offers a nice bike trail reaching the UF campus and Shands Hospital. As this
	
	Figure
	(a)
	
	Chart
	Span
	700
	700
	700

	Span
	1018
	1018
	1018

	Span
	2206
	2206
	2206

	Span
	2005
	2005
	2005

	Span
	177
	177
	177

	Span
	156
	156
	156

	Span
	141
	141
	141

	Span
	114
	114
	114

	0
	0
	0

	50
	50
	50

	100
	100
	100

	150
	150
	150

	200
	200
	200

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	0
	0
	0

	500
	500
	500

	1000
	1000
	1000

	1500
	1500
	1500

	2000
	2000
	2000

	2500
	2500
	2500

	User Count
	User Count
	User Count

	Time
	Time
	Time

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Bike Rack Usage Data of Bus #2
	Bike Rack Usage Data of Bus #2
	Bike Rack Usage Data of Bus #2

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-7. The map (a) and the bike rack usage data (b) of Bus #2
	 4.3.2 Bus #4
	Bus #4 shuttles between the Rosa Parks RTS Downtown Station and the Station located in N. Main and NE 16th Ave, which covers eastern Gainesville as shown in Figure 7a. Also, a large portion of the route overlaps with that of Bus #2 e.g. between the Rosa Parks RTS Downtown Station and Walmart Supercenter located in Waldo Rd and NE 12th Ave. The overall usage is lower than that of Bus #2. It shows periodicity in usage. For instance, the usage is high at 8 am, 10 am, and noon while the usage of 9 am, 11 am, an
	
	Figure
	(a)
	
	Chart
	Span
	447
	447
	447

	Span
	600
	600
	600

	Span
	336
	336
	336

	Span
	126
	126
	126

	Span
	162
	162
	162

	Span
	82
	82
	82

	0
	0
	0

	20
	20
	20

	40
	40
	40

	60
	60
	60

	80
	80
	80

	100
	100
	100

	120
	120
	120

	140
	140
	140

	160
	160
	160

	180
	180
	180

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	0
	0
	0

	100
	100
	100

	200
	200
	200

	300
	300
	300

	400
	400
	400

	500
	500
	500

	600
	600
	600

	700
	700
	700

	User Count
	User Count
	User Count

	Time
	Time
	Time

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Bike Rack Usage Data of Bus #4
	Bike Rack Usage Data of Bus #4
	Bike Rack Usage Data of Bus #4

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-8. The map (a) and the bike rack usage data (b) of Bus #4
	 4.3.3 Bus #8
	Bus #8 shuttles between the Reitz Union Station (Center of UF Campus) and the Station near Senior Recreation Center located near in SR 121 and NW 53rd Ave, which covers northern Gainesville as shown in Figure 8a. The bike rack usage is significantly higher than the previous two bus routes, e.g. four times more usage than that of Bus #2 as shown in Figure 8b. One end of bus stops is the Reitz Union station, which is the center of the campus; therefore, the route is very popular for commuting students, staff,
	
	Figure
	(a)
	
	Chart
	Span
	3257
	3257
	3257

	Span
	3888
	3888
	3888

	Span
	4209
	4209
	4209

	Span
	392
	392
	392

	Span
	470
	470
	470

	Span
	540
	540
	540

	0
	0
	0

	100
	100
	100

	200
	200
	200

	300
	300
	300

	400
	400
	400

	500
	500
	500

	600
	600
	600

	0
	0
	0

	1000
	1000
	1000

	2000
	2000
	2000

	3000
	3000
	3000

	4000
	4000
	4000

	5000
	5000
	5000

	6000
	6000
	6000

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	User Count
	User Count
	User Count

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Time
	Time
	Time

	Bike Rack Usage Data of Bus #8
	Bike Rack Usage Data of Bus #8
	Bike Rack Usage Data of Bus #8

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-9. The map (a) and the bike rack usage data (b) of Bus #8
	 4.3.4 Bus #16
	Bus #16 shuttles between Shands Hospital Station and the Station near Williston Rd and SE 4th St, which covers southeastern Gainesville as shown in Figure 9a. This route is also very popular. During the daytime usage is steady high as shown in Figure 9b. This indicates that multi-modal commuters between the campus/Shands hospital and the southeastern Gainesville actively use the bus bike racks.
	
	Figure
	(a)
	
	Chart
	Span
	6528
	6528
	6528

	Span
	5509
	5509
	5509

	Span
	5544
	5544
	5544

	Span
	588
	588
	588

	Span
	515
	515
	515

	Span
	503
	503
	503

	0
	0
	0

	100
	100
	100

	200
	200
	200

	300
	300
	300

	400
	400
	400

	500
	500
	500

	600
	600
	600

	700
	700
	700

	0
	0
	0

	1000
	1000
	1000

	2000
	2000
	2000

	3000
	3000
	3000

	4000
	4000
	4000

	5000
	5000
	5000

	6000
	6000
	6000

	7000
	7000
	7000

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	User Count
	User Count
	User Count

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Time
	Time
	Time

	Bike Rack Usage Data of Bus #16
	Bike Rack Usage Data of Bus #16
	Bike Rack Usage Data of Bus #16

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-10. The map (a) and the bike rack usage data (b) of Bus #16
	 4.3.5 Bus #13
	Bus #13 shuttles between the Reitz Union Station and the Station near the Cottage Grove Apartment in SW 13th St, which covers southwestern Gainesville as shown in Figure 10a. Interestingly, while this route departs from the Reitz Union, the usage of the bike rack is a lot lower compared with other bus routes including Reitz Union as shown in Figure 10b. One speculation is that the distance is relatively close (e.g. less than 3 miles) for multi-modal commuting. This may need further investigation to rule out
	
	Figure
	(a)
	
	Chart
	Span
	110
	110
	110

	Span
	128
	128
	128

	Span
	80
	80
	80

	Span
	30
	30
	30

	Span
	27
	27
	27

	Span
	13
	13
	13

	0
	0
	0

	5
	5
	5

	10
	10
	10

	15
	15
	15

	20
	20
	20

	25
	25
	25

	30
	30
	30

	35
	35
	35

	0
	0
	0

	20
	20
	20

	40
	40
	40

	60
	60
	60

	80
	80
	80

	100
	100
	100

	120
	120
	120

	140
	140
	140

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	User Count
	User Count
	User Count

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Time
	Time
	Time

	Bike Rack Usage Data of Bus #13
	Bike Rack Usage Data of Bus #13
	Bike Rack Usage Data of Bus #13

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-11. The map (a) and the bike rack usage data (b) of Bus #13
	 4.3.6 Bus #22
	Bus #22 shuttles between the Cultural Plaza Station and the Station near NW 7th Ave and NW 12th St passing through the UF campus as shown in Figure 11a. The usage plot shows very steady and stable usage during daytime as shown in Figure 11b. Since the route directly passes through the campus, many students may use the bike racks between classes or for commuting.
	
	Figure
	(a)
	
	Chart
	Span
	3041
	3041
	3041

	Span
	2987
	2987
	2987

	Span
	4407
	4407
	4407

	Span
	306
	306
	306

	Span
	304
	304
	304

	Span
	287
	287
	287

	0
	0
	0

	50
	50
	50

	100
	100
	100

	150
	150
	150

	200
	200
	200

	250
	250
	250

	300
	300
	300

	350
	350
	350

	0
	0
	0

	500
	500
	500

	1000
	1000
	1000

	1500
	1500
	1500

	2000
	2000
	2000

	2500
	2500
	2500

	3000
	3000
	3000

	3500
	3500
	3500

	4000
	4000
	4000

	4500
	4500
	4500

	5000
	5000
	5000

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	3
	3

	4
	4
	4

	5
	5
	5

	6
	6
	6

	7
	7
	7

	8
	8
	8

	9
	9
	9

	10
	10
	10

	11
	11
	11

	12
	12
	12

	13
	13
	13

	14
	14
	14

	15
	15
	15

	16
	16
	16

	17
	17
	17

	18
	18
	18

	19
	19
	19

	20
	20
	20

	21
	21
	21

	22
	22
	22

	23
	23
	23

	24
	24
	24

	User Count
	User Count
	User Count

	Usage Time (Min)
	Usage Time (Min)
	Usage Time (Min)

	Time
	Time
	Time

	Bike Rack Usage Data of Bus #22
	Bike Rack Usage Data of Bus #22
	Bike Rack Usage Data of Bus #22

	Span
	Usage Time
	Usage Time
	Usage Time

	Span
	User Count
	User Count
	User Count

	Span

	(b)
	Figure 4-12. The map (a) and the bike rack usage data (b) of Bus #22
	 4.4 Discussion and Conclusion
	The bus bike usage is mainly distributed during the daytime (7 am – 6 pm) between rush hours, which is well matched with the class hours and working hours of the University of Florida and Shands Hospital and is thought to be reasonable. The weekday usage is higher than weekend usage, which shows that the main purpose of the bike usage is for commuting. Meanwhile, Saturday usage during fall semester is higher than other seasons, which is attributed to the football games during fall. In general, multimodal co
	Due to reduced RTS service during summer, buses used during that season may benefit from having three slot bike racks to accommodate increased bike rack demand. Buses departing from and ending at the UF campus and Shands hospital need three-slot bike racks. For some bus routes far from campus, two-slot bike racks may be sufficient.
	
	
	Part D: CURRENT STATE and FINAL RECOMMENDATIONS
	 5 Current State of the Project
	 5.1 General Architecture
	The complete BikeRide system consists of two main components: a mobile client application and a web API server.
	 5.2 Mobile Application
	The mobile application was designed using the Model-View-ViewModel (MVVM) design principle, in which the frontend implementation of the application is isolated from the backend implementation of the application via a delegator interface. This separation of implementation is intended to improve long-term maintenance of the application, as backend changes to existing features can be made to the data model easily without making any corresponding changes to the View. The addition of new UI features is also si
	The mobile application was designed using the Model-View-ViewModel (MVVM) design principle, in which the frontend implementation of the application is isolated from the backend implementation of the application via a delegator interface. This separation of implementation is intended to improve long-term maintenance of the application, as backend changes to existing features can be made to the data model easily without making any corresponding changes to the View. The addition of new UI features is also si
	

	Figure 5
	Figure 5
	Figure 5
	-
	1. UML activity diagram f
	or BikeRide mobile application
	

	Figure

	As is standard with MVVM, system function calls should remain isolated to the Model and system UI function calls should remain isolated to the View, with the ViewModel mediating the
	interaction via a single-entry point for that View feature. The ViewModel should also be responsible for updating the state of the Model, either triggered via user events or periodically on a timer.
	interaction via a single-entry point for that View feature. The ViewModel should also be responsible for updating the state of the Model, either triggered via user events or periodically on a timer.
	

	5.3 Web API
	5.3 Web API
	

	Figure 5
	Figure 5
	Figure 5
	-
	2. UML activity diagram for the
	
	BikeRide web API
	

	Figure

	
	

	Data from multiple sources must be gathered to meet the basic requirements of the mobile client application. Bus data (geolocation, route name, vehicle id, etc.) is hosted on the TransLoc OpenAPI while the bike rack sensor data (available slots, total slots, vehicle id, etc.) is hosted on an ECE SQL database.
	Data from multiple sources must be gathered to meet the basic requirements of the mobile client application. Bus data (geolocation, route name, vehicle id, etc.) is hosted on the TransLoc OpenAPI while the bike rack sensor data (available slots, total slots, vehicle id, etc.) is hosted on an ECE SQL database.
	

	There were two ways to tackle this problem. The first option was to write the mobile client application to request data from both websites and handle parsing the data. The second option was to write the mobile client application to request data from a single custom API that would be responsible for collecting the relevant data from TransLoc and the ECE SQL database.
	There were two ways to tackle this problem. The first option was to write the mobile client application to request data from both websites and handle parsing the data. The second option was to write the mobile client application to request data from a single custom API that would be responsible for collecting the relevant data from TransLoc and the ECE SQL database.
	

	The second option was the obvious choice.
	The second option was the obvious choice.
	

	While the first option potentially allowed for the elimination of the custom API requirement (and the maintenance costs that come with it), there were both technical and long-term planning problems with this first approach.
	While the first option potentially allowed for the elimination of the custom API requirement (and the maintenance costs that come with it), there were both technical and long-term planning problems with this first approach.
	

	The most pressing issue was the fact that there was no operational RESTAPI for the ECE SQL database. Mobile applications (on Android and iOS) generally cannot make explicit SQL requests, and even if they could, the ECE SQL database blocks traffic from IP addresses outside of the University of Florida’s designated prefix. Furthermore, allowing mobile applications direct access to the SQL database via login credentials represented a major security risk: Android apps can be easily decompiled, analyzed, and m
	The most pressing issue was the fact that there was no operational RESTAPI for the ECE SQL database. Mobile applications (on Android and iOS) generally cannot make explicit SQL requests, and even if they could, the ECE SQL database blocks traffic from IP addresses outside of the University of Florida’s designated prefix. Furthermore, allowing mobile applications direct access to the SQL database via login credentials represented a major security risk: Android apps can be easily decompiled, analyzed, and m
	

	The first option also presents itself as a maintenance issue. If behaviors of the dependent systems change (either TransLoc or the ECE SQL situation), large portions of the mobile application’s backend would have to be rewritten to fit the changes to the data format. By moving the data gathering responsibility off of the device, we not only decrease the power consumption of the mobile application, but we also gain control of the protocols that we use the communicate with the application in terms of URL na
	The first option also presents itself as a maintenance issue. If behaviors of the dependent systems change (either TransLoc or the ECE SQL situation), large portions of the mobile application’s backend would have to be rewritten to fit the changes to the data format. By moving the data gathering responsibility off of the device, we not only decrease the power consumption of the mobile application, but we also gain control of the protocols that we use the communicate with the application in terms of URL na
	

	 5.4 Moving Forward with Deployment and Long-Term Support
	The project is currently in good shape for future modification and maintenance.
	The project is currently in good shape for future modification and maintenance.
	

	If the FDOT is committed to the long-term deployment and usage of the application, it is necessary for the FDOT to do two things.
	If the FDOT is committed to the long-term deployment and usage of the application, it is necessary for the FDOT to do two things.
	

	First, the necessary budget would need to be allocated for the annual maintenance of the following:
	First, the necessary budget would need to be allocated for the annual maintenance of the following:
	

	• Apple Developer License ($99 per annum for individual, $299 per annum for enterprise)
	• Apple Developer License ($99 per annum for individual, $299 per annum for enterprise)
	• Apple Developer License ($99 per annum for individual, $299 per annum for enterprise)
	• Apple Developer License ($99 per annum for individual, $299 per annum for enterprise)
	

	• Google Developer License ($25, one-time fee)
	• Google Developer License ($25, one-time fee)
	• Google Developer License ($25, one-time fee)
	

	• Cloud Services Fee ($65.34 per month**, $784.08 per annum**)
	• Cloud Services Fee ($65.34 per month**, $784.08 per annum**)
	• Cloud Services Fee ($65.34 per month**, $784.08 per annum**)
	
	◦ Recommended hardware requirements*
	◦ Recommended hardware requirements*
	◦ Recommended hardware requirements*
	◦ Recommended hardware requirements*
	
	▪ Always-on/Non-preemptible
	▪ Always-on/Non-preemptible
	▪ Always-on/Non-preemptible
	▪ Always-on/Non-preemptible
	

	▪ 2 CPU cores
	▪ 2 CPU cores
	▪ 2 CPU cores
	

	▪ 8 GB RAM
	▪ 8 GB RAM
	▪ 8 GB RAM
	

	◦ * Requirements based on temporary development implementation created for application demo/proof of concept. Actual requirements may increase or decrease depending on the production implementation (most likely increase, as increased web traffic will need to be considered).
	◦ * Requirements based on temporary development implementation created for application demo/proof of concept. Actual requirements may increase or decrease depending on the production implementation (most likely increase, as increased web traffic will need to be considered).
	◦ * Requirements based on temporary development implementation created for application demo/proof of concept. Actual requirements may increase or decrease depending on the production implementation (most likely increase, as increased web traffic will need to be considered).
	

	◦ ** Cloud price estimation based on Google Cloud Platform pricing for a non-preemptible n1-standard-4 server in the South Carolina region with 3 years committed usage and 30GB of storage. Prices may fluctuate as Google’s rates change monthly.
	◦ ** Cloud price estimation based on Google Cloud Platform pricing for a non-preemptible n1-standard-4 server in the South Carolina region with 3 years committed usage and 30GB of storage. Prices may fluctuate as Google’s rates change monthly.
	◦ ** Cloud price estimation based on Google Cloud Platform pricing for a non-preemptible n1-standard-4 server in the South Carolina region with 3 years committed usage and 30GB of storage. Prices may fluctuate as Google’s rates change monthly.
	

	This works out to an estimated total of $1,108.08 for the first year and $1,083.08 for subsequent years, ignoring inflation and future price hikes to cloud service costs.
	This works out to an estimated total of $1,108.08 for the first year and $1,083.08 for subsequent years, ignoring inflation and future price hikes to cloud service costs.
	

	Second, it would be preferential for the FDOT to hire a full-time software engineer dedicated to the project, or at the bare minimum, have the project added to the responsibilities of an existing software engineer. Relying solely on part time contract workers will make it more difficult, if not impossible, to realize the vision for the project; people come and go, and proper documentation and coherent implementation tends to become lost in the process. Issues with this has already been encountered: attemp
	Second, it would be preferential for the FDOT to hire a full-time software engineer dedicated to the project, or at the bare minimum, have the project added to the responsibilities of an existing software engineer. Relying solely on part time contract workers will make it more difficult, if not impossible, to realize the vision for the project; people come and go, and proper documentation and coherent implementation tends to become lost in the process. Issues with this has already been encountered: attemp
	

	The nature of the work also points to the requirement of full-time maintenance. A mobile application needs constant updates to remain usable through mobile device updates (mobile device operating systems and hardware are constantly in flux). Web servers, even if run through a cloud service provider like Amazon AWS and Google Cloud Platform, require real time support to monitor and react to changes in the security, operation, and performance of the web server in a timely manner. These sorts of demands sim
	take time for developers to acclimate to a system they have not seen before) every time a new problem arises.
	take time for developers to acclimate to a system they have not seen before) every time a new problem arises.
	

	 6 Configuring, Building, and Installing the Bikeride Application
	6.1 Introduction The following will detail how to set up the build environment, configure the application to use the latest servers and accounts, build the application, and install the application on a development device. Instructions for setting up the build environment in Windows is not detailed but can be found in the documentation of each tool used in the process. Simply follow the download links to each component, and the install instructions for Windows can be found on each download page. Detailed
	 6.2 Installing Flutter SDK
	P
	Span
	First, download the latest
	Flutter SDK
	Flutter SDK

	 package.

	 6.2.1 MacOS/Linux
	Once you have that, do
	cd ~/Downloads
	sudo mv ./flutter /opt/flutter
	to install the application.
	If you want to add it to the path, do
	sudo ln -s /opt/flutter/bin/flutter /usr/local/bin/flutter
	Now run
	flutter
	to make sure the SDK was installed correctly.
	In order to make sure dependencies were installed, run
	flutter precache
	followed by
	flutter doctor --android-licenses
	You must accept the licenses to use Flutter (enter y for all).
	 6.3 Installing Android Studio
	P
	Span
	First, download the latest
	Android Studio
	Android Studio

	 package.

	 6.3.1 MacOS
	Install the .dmg like you would with any other MacOS application.
	 6.3.2 Linux
	Once downloaded
	cd ~/Downloads
	sudo tar -zxf <ANDROID_STUDIO_PACKAGE_NAME> /opt/
	sudo ln -s /opt/android-studio/bin/studio.sh /usr/local/bin/android-studio
	to install Android Studio and add it to the executable path.
	To add a desktop icon for easy access, run
	android-studio
	and in the GUI, navigate to Tools -> Desktop Entry at the top toolbar.
	 6.4 Configuring Android Studio
	Open Android Studio and go to the Plugins section under Android Studio -> Preferences (⌘,). Search the Marketplace for Flutter and download that plugin.
	Since we installed the Flutter SDK in /opt/flutter, we will have to make sure Android Studio is aware of the path.
	To do this, navigate to Android Studio -> Preferences (⌘,). Open the Languages & Frameworks tab and select Flutter. Under the field Flutter SDK Path in the SDK block, enter
	/opt/flutter
	Then select Dart under the Languages & Frameworks menu tab. Under the field Dart SDK Path, enter
	/opt/flutter/bin/cache/dart-sdk
	Because we are targeting Android Lollipop 5.0 as a minimum requirement, we will need to install the SDK for it manually, as it is no longer default (at time of writing, Android Pie 9.0 is the default).
	Under the Appearance & Behavior tab, open the System Settings tab and select Android SDK. Under SDK Platforms, check the box next to Android 5.0 (Lollipop) to install it and hit Apply. Follow the install prompt and wait for completion.
	If you do not have a physical Android Lollipop 5.0 device, you also need to install the Android Lollipop 5.0 Emulator. To do this, navigate to Tools -> AVD Manager.
	(If this option is missing, try restarting Android Studio to see if additional components need to be installed, specifically Intel HAXM. You should be prompted on the bottom right hand corner.)
	Select + Create Virtual Device and select any hardware to emulate (Nexus 5X is a good option) and hit Next. In the System Image page, select the x86 Images tab and scroll down to "Lollipop Download |*21 * | *x86_64 * | Android 5.0 (Google APIs)" and select the Download link. Follow the install prompt and wait for completion. Once complete, select the system image you just downloaded and hit Next. On the Android Virtual Device page in the Emulated Performance block, change the Graphics field from Automatic t
	 6.5 Wrapping Up the Installation
	Once everything else is done, plug in an Android device (and/or iOS device if you are running MacOS) to your computer if you have one handy.
	Then run
	flutter doctor
	to see if everything was installed correctly.
	If you did not plug in a device, expect
	[!] Connected device
	 ! No devices available
	If there are no other errors, everything is properly configured. Otherwise, follow the instructions that were given by the flutter command to resolve the errors.
	
	
	6.6 Cloning the Project
	 6.6.1 Using Android Studio's VCS
	In the top toolbar, navigate to Android Studio -> Preferences (⌘,). Open the Version Control tab and select GitHub. Add your GitHub account to the entry list using the + button at the left-hand corner of the table. Follow the prompts on the display. Hit Apply and Ok.
	In the top toolbar, navigate to VCS -> Git -> Clone.... Input the URL of this git
	P
	Span
	https://github/austinjkee/bikeride.git
	https://github/austinjkee/bikeride.git

	

	into the field. Hit Clone. When prompted to add the newly cloned source as an Android Studio project, select Yes.
	P
	Span
	If you accidentally selected No, go to the section on
	Manually Adding The Project To Android Studio
	Manually Adding The Project To Android Studio

	.

	 6.6.2 Using Git CLI
	If you want to use this option, you likely already know how to use Git CLI, but out of an abundance of caution:
	cd <PATH_TO_DEVELOPMENT_WORKSPACE>
	P
	Span
	git clone
	https://github/austinjkee/bikeride.git
	https://github/austinjkee/bikeride.git

	

	 6.6.3 Manually Adding the Project to Android Studio
	Manually adding the Flutter project to Android Studio is necessary when using Git CLI or if something went wrong in the automated GUI cloning.
	To do so, open Android Studio to the Welcome to Android Studio window.
	Select the Open an existing Android Studio project option and navigate to the location of the cloned project.
	It should add it properly if Flutter was installed correctly; if Android Studio prompts to use Gradle with the project, something is wrong with the Flutter install and
	flutter doctor
	should be run to verify.
	If the status comes back clean, restart Android Studio and try again.
	 6.7 Building the Project
	 6.7.1 Ensuring the Project is Functional
	The developer Google Maps API key has been removed from the project.
	When ready for production, a new Google Maps API must be provided in the following files:
	ios/Runner/AppDelegate.swift
) -> Bool {
	 GMSServices.provideAPIKey("API_KEY_STRING_GOES_HERE")
	 GeneratedPluginRegistrant.register(with: self)
	android/app/src/main/AndroidManifest.xml
	 <meta-data android:name="com.google.android.geo.API_KEY"
	 android:value="API_KEY_STRING_GOES_HERE"/>
	
	 6.7.2 Generating App Code and Building the App for Target Devices
	Once the project has been given a valid Google Maps API key, you can build the program from the flutter source to the target device native code.
	In Android Studio's Terminal or in your preferred shell environment, navigate to the main directory of the project and run:
	flutter build
	This will generate the necessary code for app creation.
	 6.8 Disclaimer
	Building an iOS version of the application requires an Apple computer with at least macOS Mojave/Xcode 11.3 for up to iOS 13.2 and macOS Catalina/Xcode 11.4 for iOS 13.3 and above.
	To build the application binaries for target devices, first make sure you have a valid device attached, either physical or virtual (simulators).
	
	 6.9 Android Minimum Requirements OS
	Marshmallow 6.0 (API 23) Physical: 64-bit ARMv8 Compatible CPU Software: Google Play Services Enabled
	 6.10 iOS Minimum Requirements OS
	iOS 12.4.5 Physical: iPhone 5S (Apple A7) or newer Software: macOS Mojave/Xcode 11.3, macOS Catalina/Xcode 11.4 Preferred
	The application can theoretically be built for iPad, Apple TV, Android TV, and as a WebApp, but they are considered niche use cases and will not be covered here.
	To make sure the device is attached and recognized, in Android Studio's Terminal or in your preferred shell environment, run:
	flutter doctor
	Once you have verified that you have a device attached, proceed with running the flutter native builder.
	Optionally, you may verify that the app builds correctly before bundling.
	In Android Studio's Terminal or in your preferred shell environment, navigate to the main directory of the project and run:
	flutter run
	It should run on the attached device and all features should w
	work if the minimum requirements are met.
	To build a bundle for release, the package must be signed with a production key. Further instructions for release can be found here:
	P
	Span
	https://flutter.dev/docs/deployment/android
	https://flutter.dev/docs/deployment/android

	

	
	PART E: SUMMARY AND CONCLUSION
	 7 Summary and Conclusion
	 7.1 Summary
	For residents in the City of Gainesville, the Regional Transit System (RTS) is important for travel to work, school, or other destination. But, because all destinations cannot be reached directly using the RTS, people need to use bikes, resulting in Alachua County having the second highest bicycle mode share in the state. An apparent problem is capacity constraint because the two-slot bike racks currently available on RTS buses do not provide enough bike slots. Our team collected data for rack usage to dete
	The bike rack sensor fabrication procedure is shown in Part A, with a very detailed explanation of each step. The estimated cost of installing the bike rack sensor in the front of each bus was also calculated, showing a result of $121.90 per bus, The additional cost for a cellular plan to connect the sensors was $7.72 per bus.
	In Part A, we described the hardware. In Part B, we described the software aspects of a mobile application through which passengers can get real-time data about the availability of bike slots or buses. Part B covers the many aspects of the mobile application, including the user interface, functional and nonfunctional requirements, and a tutorial for how to use the BikeRide mobile application step by step. At the end of Part B, we provide the code for the application.
	In Part C, we present the data collected from the bike rack sensors installed on several RTS buses. For the one-year period from May 1, 2018, to April 30, 2019, we sorted the data by different time conditions: daily, weekly, monthly, seasonally. Daily usage was well matched with commuting and school hours. Weekday usage was higher than weekend usage. Usage was low in March, apparently because of spring break. The highest seasonal usage was in summer, but seasonal differences were not large. Interestingly, S
	In Part D, we suggest the current state of the project and recommendations. The detail explanation of UML activity diagram for BikeRide mobile application and web API is shown, and two obstacles for this project are identified. The system is expected to be operated without malfunction and generating too much maintenance costs for each part. For this, the costs for maintenance are mentioned with some examples about how to handle the maintenance issue. At last point of Part D, there is guidance for configurin
	
	 7.2 Conclusion
	If any problems or inconveniences happen to us, we want to handle it obviously. But it cannot be always resolved with feasible techniques when it comes to considering about the expenditure for public facility. That is why this project has meaningful values. The reasons are as follows.
	First, we are suggesting detailed installation costs for bike rack sensors and bike rack mobile application through examples and actual installations, which will be a great help for accurate budgeting.
	Second, from the data obtained by the installed bike rack sensors, it was possible to grasp how many people actually use the bike rack, and it is possible to install and change the bike rack flexibly by predicting the trend of usage change according to their needs, time, and environment also resulting in avoiding wasting money.
	Third, by making a mobile application that can check bike rack slots in real time and making it easy, it follows the trend well-suited to the modern mobile environment, and if it can be applied to a bus location system such as an RTS application, it is meaningful enough.
	Unlike other big cities, the eco-friendly City of Gainesville has buses for transportation, but it is quite difficult to use for those in the suburbs that are not close to the bus route. In particular, on weekends and at night, the traffic volume of the bus is drastically reduced, so many people experience inconvenience. To alleviate this discomfort, if we can build an environment where people can use both buses and bicycles by having the infrastructure to use bicycles, this will lead to a great improvement
	Possible following-up efforts and projects would include a pilot project testing the developed cell phone app for the biker riders in the City of Gainesville and Alachua County. An extended application could include a smart bike parking station on campus, where each bike rack in the parking station is equipped with a smart sensing module enabling us to quantify the usage of bikes on campus. Also, this system could be used in a eco-friendly carbon-free smart city, where people ride bikes in a residential are
	

Accessibility Report

		Filename:

		fdot-bdv31-977-113-rpt.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 27

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

